ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4nprm GIF version

Theorem 4nprm 10977
Description: 4 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
4nprm ¬ 4 ∈ ℙ

Proof of Theorem 4nprm
StepHypRef Expression
1 2nn 8503 . 2 2 ∈ ℕ
2 1lt2 8511 . 2 1 < 2
3 2t2e4 8496 . 2 (2 · 2) = 4
41, 1, 2, 2, 3nprmi 10972 1 ¬ 4 ∈ ℙ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 1436  2c2 8399  4c4 8401  cprime 10955
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3927  ax-sep 3930  ax-nul 3938  ax-pow 3982  ax-pr 4008  ax-un 4232  ax-setind 4324  ax-iinf 4374  ax-cnex 7372  ax-resscn 7373  ax-1cn 7374  ax-1re 7375  ax-icn 7376  ax-addcl 7377  ax-addrcl 7378  ax-mulcl 7379  ax-mulrcl 7380  ax-addcom 7381  ax-mulcom 7382  ax-addass 7383  ax-mulass 7384  ax-distr 7385  ax-i2m1 7386  ax-0lt1 7387  ax-1rid 7388  ax-0id 7389  ax-rnegex 7390  ax-precex 7391  ax-cnre 7392  ax-pre-ltirr 7393  ax-pre-ltwlin 7394  ax-pre-lttrn 7395  ax-pre-apti 7396  ax-pre-ltadd 7397  ax-pre-mulgt0 7398  ax-pre-mulext 7399  ax-arch 7400  ax-caucvg 7401
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3416  df-sn 3436  df-pr 3437  df-op 3439  df-uni 3636  df-int 3671  df-iun 3714  df-br 3820  df-opab 3874  df-mpt 3875  df-tr 3910  df-id 4092  df-po 4095  df-iso 4096  df-iord 4165  df-on 4167  df-ilim 4168  df-suc 4170  df-iom 4377  df-xp 4415  df-rel 4416  df-cnv 4417  df-co 4418  df-dm 4419  df-rn 4420  df-res 4421  df-ima 4422  df-iota 4942  df-fun 4979  df-fn 4980  df-f 4981  df-f1 4982  df-fo 4983  df-f1o 4984  df-fv 4985  df-riota 5562  df-ov 5609  df-oprab 5610  df-mpt2 5611  df-1st 5861  df-2nd 5862  df-recs 6017  df-frec 6103  df-1o 6128  df-2o 6129  df-er 6237  df-en 6403  df-pnf 7460  df-mnf 7461  df-xr 7462  df-ltxr 7463  df-le 7464  df-sub 7591  df-neg 7592  df-reap 7985  df-ap 7992  df-div 8071  df-inn 8350  df-2 8408  df-3 8409  df-4 8410  df-n0 8599  df-z 8676  df-uz 8944  df-q 9029  df-rp 9059  df-iseq 9772  df-iexp 9845  df-cj 10163  df-re 10164  df-im 10165  df-rsqrt 10318  df-abs 10319  df-dvds 10663  df-prm 10956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator