ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cntop2 GIF version

Theorem cntop2 13573
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cntop2 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)

Proof of Theorem cntop2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . 4 𝐽 = 𝐽
2 eqid 2177 . . . 4 𝐾 = 𝐾
31, 2iscn2 13571 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹: 𝐽 𝐾 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
43simplbi 274 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
54simprd 114 1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  wral 2455   cuni 3809  ccnv 4624  cima 4628  wf 5211  (class class class)co 5872  Topctop 13366   Cn ccn 13556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-fv 5223  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-map 6647  df-top 13367  df-topon 13380  df-cn 13559
This theorem is referenced by:  cnco  13592  cnntri  13595  cnss1  13597  cncnpi  13599  cncnp2m  13602  cnrest  13606  cnrest2r  13608  lmcn  13622  txcnmpt  13644  uptx  13645  lmcn2  13651  cnmpt11  13654  cnmpt11f  13655  cnmpt1t  13656  cnmpt12  13658  cnmpt21  13662  cnmpt2t  13664  cnmpt22  13665  cnmpt22f  13666  cnmptcom  13669  hmeof1o  13680  hmeontr  13684  hmeores  13686  txhmeo  13690
  Copyright terms: Public domain W3C validator