ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cntop2 GIF version

Theorem cntop2 14759
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cntop2 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)

Proof of Theorem cntop2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . 4 𝐽 = 𝐽
2 eqid 2206 . . . 4 𝐾 = 𝐾
31, 2iscn2 14757 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹: 𝐽 𝐾 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
43simplbi 274 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
54simprd 114 1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  wral 2485   cuni 3859  ccnv 4687  cima 4691  wf 5281  (class class class)co 5962  Topctop 14554   Cn ccn 14742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-map 6755  df-top 14555  df-topon 14568  df-cn 14745
This theorem is referenced by:  cnco  14778  cnntri  14781  cnss1  14783  cncnpi  14785  cncnp2m  14788  cnrest  14792  cnrest2r  14794  lmcn  14808  txcnmpt  14830  uptx  14831  lmcn2  14837  cnmpt11  14840  cnmpt11f  14841  cnmpt1t  14842  cnmpt12  14844  cnmpt21  14848  cnmpt2t  14850  cnmpt22  14851  cnmpt22f  14852  cnmptcom  14855  hmeof1o  14866  hmeontr  14870  hmeores  14872  txhmeo  14876
  Copyright terms: Public domain W3C validator