ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cntop2 GIF version

Theorem cntop2 12207
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cntop2 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)

Proof of Theorem cntop2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2113 . . . 4 𝐽 = 𝐽
2 eqid 2113 . . . 4 𝐾 = 𝐾
31, 2iscn2 12205 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹: 𝐽 𝐾 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
43simplbi 270 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
54simprd 113 1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1461  wral 2388   cuni 3700  ccnv 4496  cima 4500  wf 5075  (class class class)co 5726  Topctop 12001   Cn ccn 12191
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-map 6496  df-top 12002  df-topon 12015  df-cn 12194
This theorem is referenced by:  cnco  12226  cnntri  12229  cnss1  12231  cncnpi  12233  cncnp2m  12236  cnrest  12240  cnrest2r  12242  lmcn  12256  txcnmpt  12278  uptx  12279  lmcn2  12285  cnmpt11  12288  cnmpt11f  12289  cnmpt1t  12290  cnmpt12  12292  cnmpt21  12296  cnmpt2t  12298  cnmpt22  12299  cnmpt22f  12300  cnmptcom  12303
  Copyright terms: Public domain W3C validator