ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uchoice GIF version

Theorem uchoice 6230
Description: Principle of unique choice. This is also called non-choice. The name choice results in its similarity to something like acfun 7326 (with the key difference being the change of to ∃!) but unique choice in fact follows from the axiom of collection and our other axioms. This is somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is better described by the paragraph at the end of Section 3.9 which starts "A similar issue arises in set-theoretic mathematics". (Contributed by Jim Kingdon, 13-Sep-2025.)
Assertion
Ref Expression
uchoice ((𝐴𝑉 ∧ ∀𝑥𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem uchoice
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . . . . . . 9 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
21fnopabg 5405 . . . . . . . 8 (∀𝑥𝐴 ∃!𝑦𝜑 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴)
32biimpi 120 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴)
43adantl 277 . . . . . 6 ((𝐴𝑉 ∧ ∀𝑥𝐴 ∃!𝑦𝜑) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴)
5 simpl 109 . . . . . 6 ((𝐴𝑉 ∧ ∀𝑥𝐴 ∃!𝑦𝜑) → 𝐴𝑉)
6 fnex 5813 . . . . . 6 (({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴𝐴𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V)
74, 5, 6syl2anc 411 . . . . 5 ((𝐴𝑉 ∧ ∀𝑥𝐴 ∃!𝑦𝜑) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V)
8 fnopfvb 5627 . . . . . . . . . 10 (({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴𝑢𝐴) → (({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}‘𝑢) = 𝑣 ↔ ⟨𝑢, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}))
9 nfv 1552 . . . . . . . . . . . 12 𝑥 𝑢𝐴
10 nfsbc1v 3018 . . . . . . . . . . . 12 𝑥[𝑢 / 𝑥]𝜑
119, 10nfan 1589 . . . . . . . . . . 11 𝑥(𝑢𝐴[𝑢 / 𝑥]𝜑)
12 nfv 1552 . . . . . . . . . . . 12 𝑦 𝑢𝐴
13 nfsbc1v 3018 . . . . . . . . . . . 12 𝑦[𝑣 / 𝑦][𝑢 / 𝑥]𝜑
1412, 13nfan 1589 . . . . . . . . . . 11 𝑦(𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)
15 vex 2776 . . . . . . . . . . 11 𝑢 ∈ V
16 vex 2776 . . . . . . . . . . 11 𝑣 ∈ V
17 eleq1w 2267 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝐴𝑢𝐴))
18 sbceq1a 3009 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝜑[𝑢 / 𝑥]𝜑))
1917, 18anbi12d 473 . . . . . . . . . . 11 (𝑥 = 𝑢 → ((𝑥𝐴𝜑) ↔ (𝑢𝐴[𝑢 / 𝑥]𝜑)))
20 sbceq1a 3009 . . . . . . . . . . . 12 (𝑦 = 𝑣 → ([𝑢 / 𝑥]𝜑[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))
2120anbi2d 464 . . . . . . . . . . 11 (𝑦 = 𝑣 → ((𝑢𝐴[𝑢 / 𝑥]𝜑) ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))
2211, 14, 15, 16, 19, 21opelopabf 4325 . . . . . . . . . 10 (⟨𝑢, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))
238, 22bitrdi 196 . . . . . . . . 9 (({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴𝑢𝐴) → (({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}‘𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))
2423ralrimiva 2580 . . . . . . . 8 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴 → ∀𝑢𝐴 (({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}‘𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))
2524alrimiv 1898 . . . . . . 7 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴 → ∀𝑣𝑢𝐴 (({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}‘𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))
2625ancli 323 . . . . . 6 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴 → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴 ∧ ∀𝑣𝑢𝐴 (({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}‘𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))))
274, 26syl 14 . . . . 5 ((𝐴𝑉 ∧ ∀𝑥𝐴 ∃!𝑦𝜑) → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴 ∧ ∀𝑣𝑢𝐴 (({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}‘𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))))
28 fneq1 5367 . . . . . 6 (𝑓 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} → (𝑓 Fn 𝐴 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴))
29 fveq1 5582 . . . . . . . . . 10 (𝑓 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} → (𝑓𝑢) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}‘𝑢))
3029eqeq1d 2215 . . . . . . . . 9 (𝑓 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} → ((𝑓𝑢) = 𝑣 ↔ ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}‘𝑢) = 𝑣))
3130bibi1d 233 . . . . . . . 8 (𝑓 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} → (((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ (({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}‘𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))))
3231ralbidv 2507 . . . . . . 7 (𝑓 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} → (∀𝑢𝐴 ((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ ∀𝑢𝐴 (({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}‘𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))))
3332albidv 1848 . . . . . 6 (𝑓 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} → (∀𝑣𝑢𝐴 ((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ ∀𝑣𝑢𝐴 (({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}‘𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))))
3428, 33anbi12d 473 . . . . 5 (𝑓 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} → ((𝑓 Fn 𝐴 ∧ ∀𝑣𝑢𝐴 ((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) ↔ ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} Fn 𝐴 ∧ ∀𝑣𝑢𝐴 (({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}‘𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))))
357, 27, 34elabd 2919 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑣𝑢𝐴 ((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))))
36 ralcom4 2795 . . . . . 6 (∀𝑢𝐴𝑣((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ ∀𝑣𝑢𝐴 ((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))
3736anbi2i 457 . . . . 5 ((𝑓 Fn 𝐴 ∧ ∀𝑢𝐴𝑣((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑣𝑢𝐴 ((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))))
3837exbii 1629 . . . 4 (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑢𝐴𝑣((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑣𝑢𝐴 ((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))))
3935, 38sylibr 134 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑢𝐴𝑣((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))))
40 nfv 1552 . . . . . . . 8 𝑥(𝑓𝑢) = 𝑣
41 nfcv 2349 . . . . . . . . . 10 𝑥𝑣
4241, 10nfsbc 3020 . . . . . . . . 9 𝑥[𝑣 / 𝑦][𝑢 / 𝑥]𝜑
439, 42nfan 1589 . . . . . . . 8 𝑥(𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)
4440, 43nfbi 1613 . . . . . . 7 𝑥((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))
4544nfal 1600 . . . . . 6 𝑥𝑣((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))
46 nfv 1552 . . . . . 6 𝑢𝑣((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑))
47 fveqeq2 5592 . . . . . . . 8 (𝑢 = 𝑥 → ((𝑓𝑢) = 𝑣 ↔ (𝑓𝑥) = 𝑣))
48 eleq1w 2267 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢𝐴𝑥𝐴))
49 sbceq2a 3010 . . . . . . . . . 10 (𝑢 = 𝑥 → ([𝑢 / 𝑥]𝜑𝜑))
5049sbcbidv 3058 . . . . . . . . 9 (𝑢 = 𝑥 → ([𝑣 / 𝑦][𝑢 / 𝑥]𝜑[𝑣 / 𝑦]𝜑))
5148, 50anbi12d 473 . . . . . . . 8 (𝑢 = 𝑥 → ((𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑) ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑)))
5247, 51bibi12d 235 . . . . . . 7 (𝑢 = 𝑥 → (((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ ((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑))))
5352albidv 1848 . . . . . 6 (𝑢 = 𝑥 → (∀𝑣((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ ∀𝑣((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑))))
5445, 46, 53cbvral 2735 . . . . 5 (∀𝑢𝐴𝑣((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ ∀𝑥𝐴𝑣((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑)))
5554anbi2i 457 . . . 4 ((𝑓 Fn 𝐴 ∧ ∀𝑢𝐴𝑣((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑣((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑))))
5655exbii 1629 . . 3 (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑢𝐴𝑣((𝑓𝑢) = 𝑣 ↔ (𝑢𝐴[𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑣((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑))))
5739, 56sylib 122 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑣((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑))))
58 eqidd 2207 . . . . . . 7 (∀𝑣((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑)) → (𝑓𝑥) = (𝑓𝑥))
59 vex 2776 . . . . . . . . 9 𝑓 ∈ V
60 vex 2776 . . . . . . . . 9 𝑥 ∈ V
6159, 60fvex 5603 . . . . . . . 8 (𝑓𝑥) ∈ V
62 eqeq2 2216 . . . . . . . . 9 (𝑣 = (𝑓𝑥) → ((𝑓𝑥) = 𝑣 ↔ (𝑓𝑥) = (𝑓𝑥)))
63 dfsbcq 3001 . . . . . . . . . 10 (𝑣 = (𝑓𝑥) → ([𝑣 / 𝑦]𝜑[(𝑓𝑥) / 𝑦]𝜑))
6463anbi2d 464 . . . . . . . . 9 (𝑣 = (𝑓𝑥) → ((𝑥𝐴[𝑣 / 𝑦]𝜑) ↔ (𝑥𝐴[(𝑓𝑥) / 𝑦]𝜑)))
6562, 64bibi12d 235 . . . . . . . 8 (𝑣 = (𝑓𝑥) → (((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑)) ↔ ((𝑓𝑥) = (𝑓𝑥) ↔ (𝑥𝐴[(𝑓𝑥) / 𝑦]𝜑))))
6661, 65spcv 2868 . . . . . . 7 (∀𝑣((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑)) → ((𝑓𝑥) = (𝑓𝑥) ↔ (𝑥𝐴[(𝑓𝑥) / 𝑦]𝜑)))
6758, 66mpbid 147 . . . . . 6 (∀𝑣((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑)) → (𝑥𝐴[(𝑓𝑥) / 𝑦]𝜑))
6867simprd 114 . . . . 5 (∀𝑣((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑)) → [(𝑓𝑥) / 𝑦]𝜑)
6968ralimi 2570 . . . 4 (∀𝑥𝐴𝑣((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑)) → ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑)
7069anim2i 342 . . 3 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑣((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑))) → (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
7170eximi 1624 . 2 (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴𝑣((𝑓𝑥) = 𝑣 ↔ (𝑥𝐴[𝑣 / 𝑦]𝜑))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
7257, 71syl 14 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 [(𝑓𝑥) / 𝑦]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wex 1516  ∃!weu 2055  wcel 2177  wral 2485  Vcvv 2773  [wsbc 2999  cop 3637  {copab 4108   Fn wfn 5271  cfv 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator