Step | Hyp | Ref
| Expression |
1 | | eqid 2193 |
. . . . . . . . 9
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
2 | 1 | fnopabg 5377 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∃!𝑦𝜑 ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴) |
3 | 2 | biimpi 120 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∃!𝑦𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴) |
4 | 3 | adantl 277 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴) |
5 | | simpl 109 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑) → 𝐴 ∈ 𝑉) |
6 | | fnex 5780 |
. . . . . 6
⊢
(({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
7 | 4, 5, 6 | syl2anc 411 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
8 | | fnopfvb 5598 |
. . . . . . . . . 10
⊢
(({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 ∧ 𝑢 ∈ 𝐴) → (({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}‘𝑢) = 𝑣 ↔ 〈𝑢, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)})) |
9 | | nfv 1539 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑢 ∈ 𝐴 |
10 | | nfsbc1v 3004 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥[𝑢 / 𝑥]𝜑 |
11 | 9, 10 | nfan 1576 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑢 ∈ 𝐴 ∧ [𝑢 / 𝑥]𝜑) |
12 | | nfv 1539 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 𝑢 ∈ 𝐴 |
13 | | nfsbc1v 3004 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦[𝑣 / 𝑦][𝑢 / 𝑥]𝜑 |
14 | 12, 13 | nfan 1576 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦(𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑) |
15 | | vex 2763 |
. . . . . . . . . . 11
⊢ 𝑢 ∈ V |
16 | | vex 2763 |
. . . . . . . . . . 11
⊢ 𝑣 ∈ V |
17 | | eleq1w 2254 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝑥 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴)) |
18 | | sbceq1a 2995 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝜑 ↔ [𝑢 / 𝑥]𝜑)) |
19 | 17, 18 | anbi12d 473 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑢 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑢 ∈ 𝐴 ∧ [𝑢 / 𝑥]𝜑))) |
20 | | sbceq1a 2995 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑣 → ([𝑢 / 𝑥]𝜑 ↔ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) |
21 | 20 | anbi2d 464 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑣 → ((𝑢 ∈ 𝐴 ∧ [𝑢 / 𝑥]𝜑) ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) |
22 | 11, 14, 15, 16, 19, 21 | opelopabf 4305 |
. . . . . . . . . 10
⊢
(〈𝑢, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) |
23 | 8, 22 | bitrdi 196 |
. . . . . . . . 9
⊢
(({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 ∧ 𝑢 ∈ 𝐴) → (({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) |
24 | 23 | ralrimiva 2567 |
. . . . . . . 8
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 → ∀𝑢 ∈ 𝐴 (({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) |
25 | 24 | alrimiv 1885 |
. . . . . . 7
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 → ∀𝑣∀𝑢 ∈ 𝐴 (({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) |
26 | 25 | ancli 323 |
. . . . . 6
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 ∧ ∀𝑣∀𝑢 ∈ 𝐴 (({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))) |
27 | 4, 26 | syl 14 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑) → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 ∧ ∀𝑣∀𝑢 ∈ 𝐴 (({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))) |
28 | | fneq1 5342 |
. . . . . 6
⊢ (𝑓 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → (𝑓 Fn 𝐴 ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴)) |
29 | | fveq1 5553 |
. . . . . . . . . 10
⊢ (𝑓 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → (𝑓‘𝑢) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}‘𝑢)) |
30 | 29 | eqeq1d 2202 |
. . . . . . . . 9
⊢ (𝑓 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ((𝑓‘𝑢) = 𝑣 ↔ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}‘𝑢) = 𝑣)) |
31 | 30 | bibi1d 233 |
. . . . . . . 8
⊢ (𝑓 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → (((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ (({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))) |
32 | 31 | ralbidv 2494 |
. . . . . . 7
⊢ (𝑓 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → (∀𝑢 ∈ 𝐴 ((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ ∀𝑢 ∈ 𝐴 (({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))) |
33 | 32 | albidv 1835 |
. . . . . 6
⊢ (𝑓 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → (∀𝑣∀𝑢 ∈ 𝐴 ((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ ∀𝑣∀𝑢 ∈ 𝐴 (({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))) |
34 | 28, 33 | anbi12d 473 |
. . . . 5
⊢ (𝑓 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} → ((𝑓 Fn 𝐴 ∧ ∀𝑣∀𝑢 ∈ 𝐴 ((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) ↔ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} Fn 𝐴 ∧ ∀𝑣∀𝑢 ∈ 𝐴 (({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑))))) |
35 | 7, 27, 34 | elabd 2905 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑣∀𝑢 ∈ 𝐴 ((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))) |
36 | | ralcom4 2782 |
. . . . . 6
⊢
(∀𝑢 ∈
𝐴 ∀𝑣((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ ∀𝑣∀𝑢 ∈ 𝐴 ((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) |
37 | 36 | anbi2i 457 |
. . . . 5
⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑣∀𝑢 ∈ 𝐴 ((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))) |
38 | 37 | exbii 1616 |
. . . 4
⊢
(∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑣∀𝑢 ∈ 𝐴 ((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))) |
39 | 35, 38 | sylibr 134 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)))) |
40 | | nfv 1539 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑓‘𝑢) = 𝑣 |
41 | | nfcv 2336 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑣 |
42 | 41, 10 | nfsbc 3006 |
. . . . . . . . 9
⊢
Ⅎ𝑥[𝑣 / 𝑦][𝑢 / 𝑥]𝜑 |
43 | 9, 42 | nfan 1576 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑) |
44 | 40, 43 | nfbi 1600 |
. . . . . . 7
⊢
Ⅎ𝑥((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) |
45 | 44 | nfal 1587 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑣((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) |
46 | | nfv 1539 |
. . . . . 6
⊢
Ⅎ𝑢∀𝑣((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑)) |
47 | | fveqeq2 5563 |
. . . . . . . 8
⊢ (𝑢 = 𝑥 → ((𝑓‘𝑢) = 𝑣 ↔ (𝑓‘𝑥) = 𝑣)) |
48 | | eleq1w 2254 |
. . . . . . . . 9
⊢ (𝑢 = 𝑥 → (𝑢 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
49 | | sbceq2a 2996 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑥 → ([𝑢 / 𝑥]𝜑 ↔ 𝜑)) |
50 | 49 | sbcbidv 3044 |
. . . . . . . . 9
⊢ (𝑢 = 𝑥 → ([𝑣 / 𝑦][𝑢 / 𝑥]𝜑 ↔ [𝑣 / 𝑦]𝜑)) |
51 | 48, 50 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑢 = 𝑥 → ((𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑) ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑))) |
52 | 47, 51 | bibi12d 235 |
. . . . . . 7
⊢ (𝑢 = 𝑥 → (((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ ((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑)))) |
53 | 52 | albidv 1835 |
. . . . . 6
⊢ (𝑢 = 𝑥 → (∀𝑣((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ ∀𝑣((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑)))) |
54 | 45, 46, 53 | cbvral 2722 |
. . . . 5
⊢
(∀𝑢 ∈
𝐴 ∀𝑣((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑣((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑))) |
55 | 54 | anbi2i 457 |
. . . 4
⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑣((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑)))) |
56 | 55 | exbii 1616 |
. . 3
⊢
(∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣((𝑓‘𝑢) = 𝑣 ↔ (𝑢 ∈ 𝐴 ∧ [𝑣 / 𝑦][𝑢 / 𝑥]𝜑))) ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑣((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑)))) |
57 | 39, 56 | sylib 122 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑣((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑)))) |
58 | | eqidd 2194 |
. . . . . . 7
⊢
(∀𝑣((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑)) → (𝑓‘𝑥) = (𝑓‘𝑥)) |
59 | | vex 2763 |
. . . . . . . . 9
⊢ 𝑓 ∈ V |
60 | | vex 2763 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
61 | 59, 60 | fvex 5574 |
. . . . . . . 8
⊢ (𝑓‘𝑥) ∈ V |
62 | | eqeq2 2203 |
. . . . . . . . 9
⊢ (𝑣 = (𝑓‘𝑥) → ((𝑓‘𝑥) = 𝑣 ↔ (𝑓‘𝑥) = (𝑓‘𝑥))) |
63 | | dfsbcq 2987 |
. . . . . . . . . 10
⊢ (𝑣 = (𝑓‘𝑥) → ([𝑣 / 𝑦]𝜑 ↔ [(𝑓‘𝑥) / 𝑦]𝜑)) |
64 | 63 | anbi2d 464 |
. . . . . . . . 9
⊢ (𝑣 = (𝑓‘𝑥) → ((𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑) ↔ (𝑥 ∈ 𝐴 ∧ [(𝑓‘𝑥) / 𝑦]𝜑))) |
65 | 62, 64 | bibi12d 235 |
. . . . . . . 8
⊢ (𝑣 = (𝑓‘𝑥) → (((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑)) ↔ ((𝑓‘𝑥) = (𝑓‘𝑥) ↔ (𝑥 ∈ 𝐴 ∧ [(𝑓‘𝑥) / 𝑦]𝜑)))) |
66 | 61, 65 | spcv 2854 |
. . . . . . 7
⊢
(∀𝑣((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑)) → ((𝑓‘𝑥) = (𝑓‘𝑥) ↔ (𝑥 ∈ 𝐴 ∧ [(𝑓‘𝑥) / 𝑦]𝜑))) |
67 | 58, 66 | mpbid 147 |
. . . . . 6
⊢
(∀𝑣((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑)) → (𝑥 ∈ 𝐴 ∧ [(𝑓‘𝑥) / 𝑦]𝜑)) |
68 | 67 | simprd 114 |
. . . . 5
⊢
(∀𝑣((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑)) → [(𝑓‘𝑥) / 𝑦]𝜑) |
69 | 68 | ralimi 2557 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑣((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑)) → ∀𝑥 ∈ 𝐴 [(𝑓‘𝑥) / 𝑦]𝜑) |
70 | 69 | anim2i 342 |
. . 3
⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑣((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑))) → (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 [(𝑓‘𝑥) / 𝑦]𝜑)) |
71 | 70 | eximi 1611 |
. 2
⊢
(∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑣((𝑓‘𝑥) = 𝑣 ↔ (𝑥 ∈ 𝐴 ∧ [𝑣 / 𝑦]𝜑))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 [(𝑓‘𝑥) / 𝑦]𝜑)) |
72 | 57, 71 | syl 14 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 [(𝑓‘𝑥) / 𝑦]𝜑)) |