![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > invrfvald | GIF version |
Description: Multiplicative inverse function for a ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
Ref | Expression |
---|---|
invrfvald.u | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
invrfvald.g | ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) |
invrfvald.i | ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) |
invrfvald.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
invrfvald | ⊢ (𝜑 → 𝐼 = (invg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invrfvald.u | . . . 4 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
2 | 1 | oveq2d 5934 | . . 3 ⊢ (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))) |
3 | 2 | fveq2d 5558 | . 2 ⊢ (𝜑 → (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
4 | invrfvald.g | . . 3 ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) | |
5 | 4 | fveq2d 5558 | . 2 ⊢ (𝜑 → (invg‘𝐺) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))) |
6 | invrfvald.i | . . 3 ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) | |
7 | df-invr 13617 | . . . 4 ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | |
8 | fveq2 5554 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
9 | fveq2 5554 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
10 | 8, 9 | oveq12d 5936 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))) |
11 | 10 | fveq2d 5558 | . . . 4 ⊢ (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
12 | invrfvald.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
13 | 12 | elexd 2773 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
14 | eqid 2193 | . . . . . . . 8 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
15 | eqid 2193 | . . . . . . . 8 ⊢ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) | |
16 | 14, 15 | unitgrp 13612 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp) |
17 | 12, 16 | syl 14 | . . . . . 6 ⊢ (𝜑 → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp) |
18 | eqid 2193 | . . . . . . 7 ⊢ (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) = (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) | |
19 | eqid 2193 | . . . . . . 7 ⊢ (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) | |
20 | 18, 19 | grpinvfng 13116 | . . . . . 6 ⊢ (((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
21 | 17, 20 | syl 14 | . . . . 5 ⊢ (𝜑 → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
22 | basfn 12676 | . . . . . 6 ⊢ Base Fn V | |
23 | 17 | elexd 2773 | . . . . . 6 ⊢ (𝜑 → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ V) |
24 | funfvex 5571 | . . . . . . 7 ⊢ ((Fun Base ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ dom Base) → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) | |
25 | 24 | funfni 5354 | . . . . . 6 ⊢ ((Base Fn V ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ V) → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) |
26 | 22, 23, 25 | sylancr 414 | . . . . 5 ⊢ (𝜑 → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) |
27 | fnex 5780 | . . . . 5 ⊢ (((invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∧ (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) | |
28 | 21, 26, 27 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) |
29 | 7, 11, 13, 28 | fvmptd3 5651 | . . 3 ⊢ (𝜑 → (invr‘𝑅) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
30 | 6, 29 | eqtrd 2226 | . 2 ⊢ (𝜑 → 𝐼 = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
31 | 3, 5, 30 | 3eqtr4rd 2237 | 1 ⊢ (𝜑 → 𝐼 = (invg‘𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 Fn wfn 5249 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 ↾s cress 12619 Grpcgrp 13072 invgcminusg 13073 mulGrpcmgp 13416 Ringcrg 13492 Unitcui 13583 invrcinvr 13616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-tpos 6298 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-cmn 13356 df-abl 13357 df-mgp 13417 df-ur 13456 df-srg 13460 df-ring 13494 df-oppr 13564 df-dvdsr 13585 df-unit 13586 df-invr 13617 |
This theorem is referenced by: unitinvcl 13619 unitinvinv 13620 unitlinv 13622 unitrinv 13623 rdivmuldivd 13640 invrpropdg 13645 subrgugrp 13736 |
Copyright terms: Public domain | W3C validator |