ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrfvald GIF version

Theorem invrfvald 13959
Description: Multiplicative inverse function for a ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
Hypotheses
Ref Expression
invrfvald.u (𝜑𝑈 = (Unit‘𝑅))
invrfvald.g (𝜑𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))
invrfvald.i (𝜑𝐼 = (invr𝑅))
invrfvald.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
invrfvald (𝜑𝐼 = (invg𝐺))

Proof of Theorem invrfvald
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 invrfvald.u . . . 4 (𝜑𝑈 = (Unit‘𝑅))
21oveq2d 5973 . . 3 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)))
32fveq2d 5593 . 2 (𝜑 → (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))))
4 invrfvald.g . . 3 (𝜑𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))
54fveq2d 5593 . 2 (𝜑 → (invg𝐺) = (invg‘((mulGrp‘𝑅) ↾s 𝑈)))
6 invrfvald.i . . 3 (𝜑𝐼 = (invr𝑅))
7 df-invr 13958 . . . 4 invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))
8 fveq2 5589 . . . . . 6 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
9 fveq2 5589 . . . . . 6 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
108, 9oveq12d 5975 . . . . 5 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)))
1110fveq2d 5593 . . . 4 (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))))
12 invrfvald.r . . . . 5 (𝜑𝑅 ∈ Ring)
1312elexd 2787 . . . 4 (𝜑𝑅 ∈ V)
14 eqid 2206 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
15 eqid 2206 . . . . . . . 8 ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
1614, 15unitgrp 13953 . . . . . . 7 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
1712, 16syl 14 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
18 eqid 2206 . . . . . . 7 (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) = (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))
19 eqid 2206 . . . . . . 7 (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))
2018, 19grpinvfng 13451 . . . . . 6 (((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))))
2117, 20syl 14 . . . . 5 (𝜑 → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))))
22 basfn 12965 . . . . . 6 Base Fn V
2317elexd 2787 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ V)
24 funfvex 5606 . . . . . . 7 ((Fun Base ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ dom Base) → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V)
2524funfni 5385 . . . . . 6 ((Base Fn V ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ V) → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V)
2622, 23, 25sylancr 414 . . . . 5 (𝜑 → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V)
27 fnex 5819 . . . . 5 (((invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∧ (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V)
2821, 26, 27syl2anc 411 . . . 4 (𝜑 → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V)
297, 11, 13, 28fvmptd3 5686 . . 3 (𝜑 → (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))))
306, 29eqtrd 2239 . 2 (𝜑𝐼 = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))))
313, 5, 303eqtr4rd 2250 1 (𝜑𝐼 = (invg𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773   Fn wfn 5275  cfv 5280  (class class class)co 5957  Basecbs 12907  s cress 12908  Grpcgrp 13407  invgcminusg 13408  mulGrpcmgp 13757  Ringcrg 13833  Unitcui 13924  invrcinvr 13957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-tpos 6344  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-mulr 12998  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-cmn 13697  df-abl 13698  df-mgp 13758  df-ur 13797  df-srg 13801  df-ring 13835  df-oppr 13905  df-dvdsr 13926  df-unit 13927  df-invr 13958
This theorem is referenced by:  unitinvcl  13960  unitinvinv  13961  unitlinv  13963  unitrinv  13964  rdivmuldivd  13981  invrpropdg  13986  subrgugrp  14077
  Copyright terms: Public domain W3C validator