| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > invrfvald | GIF version | ||
| Description: Multiplicative inverse function for a ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
| Ref | Expression |
|---|---|
| invrfvald.u | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
| invrfvald.g | ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) |
| invrfvald.i | ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) |
| invrfvald.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| invrfvald | ⊢ (𝜑 → 𝐼 = (invg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrfvald.u | . . . 4 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
| 2 | 1 | oveq2d 5973 | . . 3 ⊢ (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))) |
| 3 | 2 | fveq2d 5593 | . 2 ⊢ (𝜑 → (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 4 | invrfvald.g | . . 3 ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) | |
| 5 | 4 | fveq2d 5593 | . 2 ⊢ (𝜑 → (invg‘𝐺) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 6 | invrfvald.i | . . 3 ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) | |
| 7 | df-invr 13958 | . . . 4 ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | |
| 8 | fveq2 5589 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 9 | fveq2 5589 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 10 | 8, 9 | oveq12d 5975 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))) |
| 11 | 10 | fveq2d 5593 | . . . 4 ⊢ (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 12 | invrfvald.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 13 | 12 | elexd 2787 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
| 14 | eqid 2206 | . . . . . . . 8 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 15 | eqid 2206 | . . . . . . . 8 ⊢ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) | |
| 16 | 14, 15 | unitgrp 13953 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp) |
| 17 | 12, 16 | syl 14 | . . . . . 6 ⊢ (𝜑 → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp) |
| 18 | eqid 2206 | . . . . . . 7 ⊢ (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) = (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) | |
| 19 | eqid 2206 | . . . . . . 7 ⊢ (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) | |
| 20 | 18, 19 | grpinvfng 13451 | . . . . . 6 ⊢ (((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 21 | 17, 20 | syl 14 | . . . . 5 ⊢ (𝜑 → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 22 | basfn 12965 | . . . . . 6 ⊢ Base Fn V | |
| 23 | 17 | elexd 2787 | . . . . . 6 ⊢ (𝜑 → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ V) |
| 24 | funfvex 5606 | . . . . . . 7 ⊢ ((Fun Base ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ dom Base) → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) | |
| 25 | 24 | funfni 5385 | . . . . . 6 ⊢ ((Base Fn V ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ V) → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) |
| 26 | 22, 23, 25 | sylancr 414 | . . . . 5 ⊢ (𝜑 → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) |
| 27 | fnex 5819 | . . . . 5 ⊢ (((invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∧ (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) | |
| 28 | 21, 26, 27 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) |
| 29 | 7, 11, 13, 28 | fvmptd3 5686 | . . 3 ⊢ (𝜑 → (invr‘𝑅) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 30 | 6, 29 | eqtrd 2239 | . 2 ⊢ (𝜑 → 𝐼 = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 31 | 3, 5, 30 | 3eqtr4rd 2250 | 1 ⊢ (𝜑 → 𝐼 = (invg‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 Fn wfn 5275 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 ↾s cress 12908 Grpcgrp 13407 invgcminusg 13408 mulGrpcmgp 13757 Ringcrg 13833 Unitcui 13924 invrcinvr 13957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-tpos 6344 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-mulr 12998 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-cmn 13697 df-abl 13698 df-mgp 13758 df-ur 13797 df-srg 13801 df-ring 13835 df-oppr 13905 df-dvdsr 13926 df-unit 13927 df-invr 13958 |
| This theorem is referenced by: unitinvcl 13960 unitinvinv 13961 unitlinv 13963 unitrinv 13964 rdivmuldivd 13981 invrpropdg 13986 subrgugrp 14077 |
| Copyright terms: Public domain | W3C validator |