ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invrfvald GIF version

Theorem invrfvald 13826
Description: Multiplicative inverse function for a ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
Hypotheses
Ref Expression
invrfvald.u (𝜑𝑈 = (Unit‘𝑅))
invrfvald.g (𝜑𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))
invrfvald.i (𝜑𝐼 = (invr𝑅))
invrfvald.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
invrfvald (𝜑𝐼 = (invg𝐺))

Proof of Theorem invrfvald
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 invrfvald.u . . . 4 (𝜑𝑈 = (Unit‘𝑅))
21oveq2d 5959 . . 3 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)))
32fveq2d 5579 . 2 (𝜑 → (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))))
4 invrfvald.g . . 3 (𝜑𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))
54fveq2d 5579 . 2 (𝜑 → (invg𝐺) = (invg‘((mulGrp‘𝑅) ↾s 𝑈)))
6 invrfvald.i . . 3 (𝜑𝐼 = (invr𝑅))
7 df-invr 13825 . . . 4 invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))
8 fveq2 5575 . . . . . 6 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
9 fveq2 5575 . . . . . 6 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
108, 9oveq12d 5961 . . . . 5 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)))
1110fveq2d 5579 . . . 4 (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))))
12 invrfvald.r . . . . 5 (𝜑𝑅 ∈ Ring)
1312elexd 2784 . . . 4 (𝜑𝑅 ∈ V)
14 eqid 2204 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
15 eqid 2204 . . . . . . . 8 ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
1614, 15unitgrp 13820 . . . . . . 7 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
1712, 16syl 14 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp)
18 eqid 2204 . . . . . . 7 (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) = (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))
19 eqid 2204 . . . . . . 7 (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))
2018, 19grpinvfng 13318 . . . . . 6 (((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))))
2117, 20syl 14 . . . . 5 (𝜑 → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))))
22 basfn 12832 . . . . . 6 Base Fn V
2317elexd 2784 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ V)
24 funfvex 5592 . . . . . . 7 ((Fun Base ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ dom Base) → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V)
2524funfni 5375 . . . . . 6 ((Base Fn V ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ V) → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V)
2622, 23, 25sylancr 414 . . . . 5 (𝜑 → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V)
27 fnex 5805 . . . . 5 (((invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∧ (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V)
2821, 26, 27syl2anc 411 . . . 4 (𝜑 → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V)
297, 11, 13, 28fvmptd3 5672 . . 3 (𝜑 → (invr𝑅) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))))
306, 29eqtrd 2237 . 2 (𝜑𝐼 = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))))
313, 5, 303eqtr4rd 2248 1 (𝜑𝐼 = (invg𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  Vcvv 2771   Fn wfn 5265  cfv 5270  (class class class)co 5943  Basecbs 12774  s cress 12775  Grpcgrp 13274  invgcminusg 13275  mulGrpcmgp 13624  Ringcrg 13700  Unitcui 13791  invrcinvr 13824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-tpos 6330  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-cmn 13564  df-abl 13565  df-mgp 13625  df-ur 13664  df-srg 13668  df-ring 13702  df-oppr 13772  df-dvdsr 13793  df-unit 13794  df-invr 13825
This theorem is referenced by:  unitinvcl  13827  unitinvinv  13828  unitlinv  13830  unitrinv  13831  rdivmuldivd  13848  invrpropdg  13853  subrgugrp  13944
  Copyright terms: Public domain W3C validator