| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > invrfvald | GIF version | ||
| Description: Multiplicative inverse function for a ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
| Ref | Expression |
|---|---|
| invrfvald.u | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
| invrfvald.g | ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) |
| invrfvald.i | ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) |
| invrfvald.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| invrfvald | ⊢ (𝜑 → 𝐼 = (invg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrfvald.u | . . . 4 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
| 2 | 1 | oveq2d 6016 | . . 3 ⊢ (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))) |
| 3 | 2 | fveq2d 5630 | . 2 ⊢ (𝜑 → (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 4 | invrfvald.g | . . 3 ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) | |
| 5 | 4 | fveq2d 5630 | . 2 ⊢ (𝜑 → (invg‘𝐺) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 6 | invrfvald.i | . . 3 ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) | |
| 7 | df-invr 14079 | . . . 4 ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | |
| 8 | fveq2 5626 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 9 | fveq2 5626 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 10 | 8, 9 | oveq12d 6018 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))) |
| 11 | 10 | fveq2d 5630 | . . . 4 ⊢ (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 12 | invrfvald.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 13 | 12 | elexd 2813 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
| 14 | eqid 2229 | . . . . . . . 8 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 15 | eqid 2229 | . . . . . . . 8 ⊢ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) | |
| 16 | 14, 15 | unitgrp 14074 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp) |
| 17 | 12, 16 | syl 14 | . . . . . 6 ⊢ (𝜑 → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp) |
| 18 | eqid 2229 | . . . . . . 7 ⊢ (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) = (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) | |
| 19 | eqid 2229 | . . . . . . 7 ⊢ (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) | |
| 20 | 18, 19 | grpinvfng 13572 | . . . . . 6 ⊢ (((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 21 | 17, 20 | syl 14 | . . . . 5 ⊢ (𝜑 → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 22 | basfn 13086 | . . . . . 6 ⊢ Base Fn V | |
| 23 | 17 | elexd 2813 | . . . . . 6 ⊢ (𝜑 → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ V) |
| 24 | funfvex 5643 | . . . . . . 7 ⊢ ((Fun Base ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ dom Base) → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) | |
| 25 | 24 | funfni 5422 | . . . . . 6 ⊢ ((Base Fn V ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ V) → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) |
| 26 | 22, 23, 25 | sylancr 414 | . . . . 5 ⊢ (𝜑 → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) |
| 27 | fnex 5860 | . . . . 5 ⊢ (((invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∧ (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) | |
| 28 | 21, 26, 27 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) |
| 29 | 7, 11, 13, 28 | fvmptd3 5727 | . . 3 ⊢ (𝜑 → (invr‘𝑅) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 30 | 6, 29 | eqtrd 2262 | . 2 ⊢ (𝜑 → 𝐼 = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 31 | 3, 5, 30 | 3eqtr4rd 2273 | 1 ⊢ (𝜑 → 𝐼 = (invg‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 Fn wfn 5312 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 ↾s cress 13028 Grpcgrp 13528 invgcminusg 13529 mulGrpcmgp 13878 Ringcrg 13954 Unitcui 14045 invrcinvr 14078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-tpos 6389 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-plusg 13118 df-mulr 13119 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-cmn 13818 df-abl 13819 df-mgp 13879 df-ur 13918 df-srg 13922 df-ring 13956 df-oppr 14026 df-dvdsr 14047 df-unit 14048 df-invr 14079 |
| This theorem is referenced by: unitinvcl 14081 unitinvinv 14082 unitlinv 14084 unitrinv 14085 rdivmuldivd 14102 invrpropdg 14107 subrgugrp 14198 |
| Copyright terms: Public domain | W3C validator |