| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > invrfvald | GIF version | ||
| Description: Multiplicative inverse function for a ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.) |
| Ref | Expression |
|---|---|
| invrfvald.u | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
| invrfvald.g | ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) |
| invrfvald.i | ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) |
| invrfvald.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| invrfvald | ⊢ (𝜑 → 𝐼 = (invg‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrfvald.u | . . . 4 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
| 2 | 1 | oveq2d 5978 | . . 3 ⊢ (𝜑 → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))) |
| 3 | 2 | fveq2d 5598 | . 2 ⊢ (𝜑 → (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 4 | invrfvald.g | . . 3 ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) | |
| 5 | 4 | fveq2d 5598 | . 2 ⊢ (𝜑 → (invg‘𝐺) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 6 | invrfvald.i | . . 3 ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) | |
| 7 | df-invr 13968 | . . . 4 ⊢ invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | |
| 8 | fveq2 5594 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 9 | fveq2 5594 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅)) | |
| 10 | 8, 9 | oveq12d 5980 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))) |
| 11 | 10 | fveq2d 5598 | . . . 4 ⊢ (𝑟 = 𝑅 → (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 12 | invrfvald.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 13 | 12 | elexd 2787 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
| 14 | eqid 2206 | . . . . . . . 8 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 15 | eqid 2206 | . . . . . . . 8 ⊢ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) | |
| 16 | 14, 15 | unitgrp 13963 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp) |
| 17 | 12, 16 | syl 14 | . . . . . 6 ⊢ (𝜑 → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp) |
| 18 | eqid 2206 | . . . . . . 7 ⊢ (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) = (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) | |
| 19 | eqid 2206 | . . . . . . 7 ⊢ (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) | |
| 20 | 18, 19 | grpinvfng 13461 | . . . . . 6 ⊢ (((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ Grp → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 21 | 17, 20 | syl 14 | . . . . 5 ⊢ (𝜑 → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 22 | basfn 12975 | . . . . . 6 ⊢ Base Fn V | |
| 23 | 17 | elexd 2787 | . . . . . 6 ⊢ (𝜑 → ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ V) |
| 24 | funfvex 5611 | . . . . . . 7 ⊢ ((Fun Base ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ dom Base) → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) | |
| 25 | 24 | funfni 5390 | . . . . . 6 ⊢ ((Base Fn V ∧ ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ∈ V) → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) |
| 26 | 22, 23, 25 | sylancr 414 | . . . . 5 ⊢ (𝜑 → (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) |
| 27 | fnex 5824 | . . . . 5 ⊢ (((invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) Fn (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∧ (Base‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) | |
| 28 | 21, 26, 27 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅))) ∈ V) |
| 29 | 7, 11, 13, 28 | fvmptd3 5691 | . . 3 ⊢ (𝜑 → (invr‘𝑅) = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 30 | 6, 29 | eqtrd 2239 | . 2 ⊢ (𝜑 → 𝐼 = (invg‘((mulGrp‘𝑅) ↾s (Unit‘𝑅)))) |
| 31 | 3, 5, 30 | 3eqtr4rd 2250 | 1 ⊢ (𝜑 → 𝐼 = (invg‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 Fn wfn 5280 ‘cfv 5285 (class class class)co 5962 Basecbs 12917 ↾s cress 12918 Grpcgrp 13417 invgcminusg 13418 mulGrpcmgp 13767 Ringcrg 13843 Unitcui 13934 invrcinvr 13967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-lttrn 8069 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-tpos 6349 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-inn 9067 df-2 9125 df-3 9126 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-iress 12925 df-plusg 13007 df-mulr 13008 df-0g 13175 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-grp 13420 df-minusg 13421 df-cmn 13707 df-abl 13708 df-mgp 13768 df-ur 13807 df-srg 13811 df-ring 13845 df-oppr 13915 df-dvdsr 13936 df-unit 13937 df-invr 13968 |
| This theorem is referenced by: unitinvcl 13970 unitinvinv 13971 unitlinv 13973 unitrinv 13974 rdivmuldivd 13991 invrpropdg 13996 subrgugrp 14087 |
| Copyright terms: Public domain | W3C validator |