ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumsubm GIF version

Theorem gsumsubm 13136
Description: Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014.)
Hypotheses
Ref Expression
gsumsubm.a (𝜑𝐴𝑉)
gsumsubm.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
gsumsubm.f (𝜑𝐹:𝐴𝑆)
gsumsubm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
gsumsubm (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))

Proof of Theorem gsumsubm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2196 . 2 (+g𝐺) = (+g𝐺)
3 gsumsubm.h . 2 𝐻 = (𝐺s 𝑆)
4 gsumsubm.s . . 3 (𝜑𝑆 ∈ (SubMnd‘𝐺))
5 submrcl 13113 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
64, 5syl 14 . 2 (𝜑𝐺 ∈ Mnd)
7 gsumsubm.a . 2 (𝜑𝐴𝑉)
81submss 13118 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
94, 8syl 14 . 2 (𝜑𝑆 ⊆ (Base‘𝐺))
10 gsumsubm.f . 2 (𝜑𝐹:𝐴𝑆)
11 eqid 2196 . . . 4 (0g𝐺) = (0g𝐺)
1211subm0cl 13120 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑆)
134, 12syl 14 . 2 (𝜑 → (0g𝐺) ∈ 𝑆)
141, 2, 11mndlrid 13085 . . 3 ((𝐺 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐺)) → (((0g𝐺)(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)(0g𝐺)) = 𝑥))
156, 14sylan 283 . 2 ((𝜑𝑥 ∈ (Base‘𝐺)) → (((0g𝐺)(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)(0g𝐺)) = 𝑥))
161, 2, 3, 6, 7, 9, 10, 13, 15gsumress 13048 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wss 3157  wf 5255  cfv 5259  (class class class)co 5923  Basecbs 12688  s cress 12689  +gcplusg 12765  0gc0g 12937   Σg cgsu 12938  Mndcmnd 13067  SubMndcsubmnd 13100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-pre-ltirr 7993  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-recs 6364  df-frec 6450  df-pnf 8065  df-mnf 8066  df-ltxr 8068  df-neg 8202  df-inn 8993  df-2 9051  df-z 9329  df-uz 9604  df-seqfrec 10542  df-ndx 12691  df-slot 12692  df-base 12694  df-sets 12695  df-iress 12696  df-plusg 12778  df-0g 12939  df-igsum 12940  df-mgm 13009  df-sgrp 13055  df-mnd 13068  df-submnd 13102
This theorem is referenced by:  lgseisenlem4  15324
  Copyright terms: Public domain W3C validator