![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gsumsubm | GIF version |
Description: Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014.) |
Ref | Expression |
---|---|
gsumsubm.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumsubm.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
gsumsubm.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
gsumsubm.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
Ref | Expression |
---|---|
gsumsubm | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2196 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2196 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | gsumsubm.h | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
4 | gsumsubm.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | |
5 | submrcl 13079 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
7 | gsumsubm.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | 1 | submss 13084 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
9 | 4, 8 | syl 14 | . 2 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐺)) |
10 | gsumsubm.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
11 | eqid 2196 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
12 | 11 | subm0cl 13086 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (0g‘𝐺) ∈ 𝑆) |
13 | 4, 12 | syl 14 | . 2 ⊢ (𝜑 → (0g‘𝐺) ∈ 𝑆) |
14 | 1, 2, 11 | mndlrid 13051 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐺)) → (((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥)) |
15 | 6, 14 | sylan 283 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥)) |
16 | 1, 2, 3, 6, 7, 9, 10, 13, 15 | gsumress 13014 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 Basecbs 12654 ↾s cress 12655 +gcplusg 12731 0gc0g 12903 Σg cgsu 12904 Mndcmnd 13033 SubMndcsubmnd 13066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-addcom 7977 ax-addass 7979 ax-i2m1 7982 ax-0lt1 7983 ax-0id 7985 ax-rnegex 7986 ax-pre-ltirr 7989 ax-pre-ltadd 7993 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-pnf 8061 df-mnf 8062 df-ltxr 8064 df-neg 8198 df-inn 8988 df-2 9046 df-z 9324 df-uz 9599 df-seqfrec 10525 df-ndx 12657 df-slot 12658 df-base 12660 df-sets 12661 df-iress 12662 df-plusg 12744 df-0g 12905 df-igsum 12906 df-mgm 12975 df-sgrp 13021 df-mnd 13034 df-submnd 13068 |
This theorem is referenced by: lgseisenlem4 15281 |
Copyright terms: Public domain | W3C validator |