ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tsettps GIF version

Theorem tsettps 14358
Description: If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tsettps.a 𝐴 = (Base‘𝐾)
tsettps.j 𝐽 = (TopSet‘𝐾)
Assertion
Ref Expression
tsettps (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)

Proof of Theorem tsettps
StepHypRef Expression
1 tsettps.a . . . 4 𝐴 = (Base‘𝐾)
2 tsettps.j . . . 4 𝐽 = (TopSet‘𝐾)
31, 2topontopn 14357 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾))
4 id 19 . . 3 (𝐽 ∈ (TopOn‘𝐴) → 𝐽 ∈ (TopOn‘𝐴))
53, 4eqeltrrd 2274 . 2 (𝐽 ∈ (TopOn‘𝐴) → (TopOpen‘𝐾) ∈ (TopOn‘𝐴))
6 eqid 2196 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
71, 6istps 14352 . 2 (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘𝐴))
85, 7sylibr 134 1 (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cfv 5259  Basecbs 12703  TopSetcts 12786  TopOpenctopn 12942  TopOnctopon 14330  TopSpctps 14350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-ndx 12706  df-slot 12707  df-base 12709  df-tset 12799  df-rest 12943  df-topn 12944  df-top 14318  df-topon 14331  df-topsp 14351
This theorem is referenced by:  eltpsg  14360
  Copyright terms: Public domain W3C validator