ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltadd2dd GIF version

Theorem ltadd2dd 8397
Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltadd2d.1 (𝜑𝐴 ∈ ℝ)
ltadd2d.2 (𝜑𝐵 ∈ ℝ)
ltadd2d.3 (𝜑𝐶 ∈ ℝ)
ltletrd.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ltadd2dd (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵))

Proof of Theorem ltadd2dd
StepHypRef Expression
1 ltletrd.4 . 2 (𝜑𝐴 < 𝐵)
2 ltadd2d.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltadd2d.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltadd2d.3 . . 3 (𝜑𝐶 ∈ ℝ)
52, 3, 4ltadd2d 8396 . 2 (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
61, 5mpbid 147 1 (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2160   class class class wbr 4018  (class class class)co 5891  cr 7828   + caddc 7832   < clt 8010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-i2m1 7934  ax-0id 7937  ax-rnegex 7938  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4647  df-iota 5193  df-fv 5239  df-ov 5894  df-pnf 8012  df-mnf 8013  df-ltxr 8015
This theorem is referenced by:  zltaddlt1le  10025  rebtwn2zlemstep  10271  rebtwn2z  10273  2tnp1ge0ge0  10319  cvg1nlemcau  11011  resqrexlemdec  11038  cos12dec  11793  eirraplem  11802  ivthinclemlopn  14511  cosq23lt0  14651  cosordlem  14667
  Copyright terms: Public domain W3C validator