Proof of Theorem 2tnp1ge0ge0
Step | Hyp | Ref
| Expression |
1 | | 2z 9219 |
. . . . . . 7
⊢ 2 ∈
ℤ |
2 | 1 | a1i 9 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → 2 ∈
ℤ) |
3 | | id 19 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℤ) |
4 | 2, 3 | zmulcld 9319 |
. . . . 5
⊢ (𝑁 ∈ ℤ → (2
· 𝑁) ∈
ℤ) |
5 | 4 | peano2zd 9316 |
. . . 4
⊢ (𝑁 ∈ ℤ → ((2
· 𝑁) + 1) ∈
ℤ) |
6 | 5 | zred 9313 |
. . 3
⊢ (𝑁 ∈ ℤ → ((2
· 𝑁) + 1) ∈
ℝ) |
7 | | 2re 8927 |
. . . 4
⊢ 2 ∈
ℝ |
8 | 7 | a1i 9 |
. . 3
⊢ (𝑁 ∈ ℤ → 2 ∈
ℝ) |
9 | | 2pos 8948 |
. . . 4
⊢ 0 <
2 |
10 | 9 | a1i 9 |
. . 3
⊢ (𝑁 ∈ ℤ → 0 <
2) |
11 | | ge0div 8766 |
. . 3
⊢ ((((2
· 𝑁) + 1) ∈
ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ ((2 ·
𝑁) + 1) ↔ 0 ≤ (((2
· 𝑁) + 1) /
2))) |
12 | 6, 8, 10, 11 | syl3anc 1228 |
. 2
⊢ (𝑁 ∈ ℤ → (0 ≤
((2 · 𝑁) + 1) ↔
0 ≤ (((2 · 𝑁) +
1) / 2))) |
13 | 4 | zcnd 9314 |
. . . . 5
⊢ (𝑁 ∈ ℤ → (2
· 𝑁) ∈
ℂ) |
14 | | 1cnd 7915 |
. . . . 5
⊢ (𝑁 ∈ ℤ → 1 ∈
ℂ) |
15 | | 2cn 8928 |
. . . . . . 7
⊢ 2 ∈
ℂ |
16 | | 2ap0 8950 |
. . . . . . 7
⊢ 2 #
0 |
17 | 15, 16 | pm3.2i 270 |
. . . . . 6
⊢ (2 ∈
ℂ ∧ 2 # 0) |
18 | 17 | a1i 9 |
. . . . 5
⊢ (𝑁 ∈ ℤ → (2 ∈
ℂ ∧ 2 # 0)) |
19 | | divdirap 8593 |
. . . . 5
⊢ (((2
· 𝑁) ∈ ℂ
∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((2
· 𝑁) + 1) / 2) =
(((2 · 𝑁) / 2) + (1
/ 2))) |
20 | 13, 14, 18, 19 | syl3anc 1228 |
. . . 4
⊢ (𝑁 ∈ ℤ → (((2
· 𝑁) + 1) / 2) =
(((2 · 𝑁) / 2) + (1
/ 2))) |
21 | | zcn 9196 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
22 | | 2cnd 8930 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → 2 ∈
ℂ) |
23 | 16 | a1i 9 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → 2 #
0) |
24 | 21, 22, 23 | divcanap3d 8691 |
. . . . 5
⊢ (𝑁 ∈ ℤ → ((2
· 𝑁) / 2) = 𝑁) |
25 | 24 | oveq1d 5857 |
. . . 4
⊢ (𝑁 ∈ ℤ → (((2
· 𝑁) / 2) + (1 / 2))
= (𝑁 + (1 /
2))) |
26 | 20, 25 | eqtrd 2198 |
. . 3
⊢ (𝑁 ∈ ℤ → (((2
· 𝑁) + 1) / 2) =
(𝑁 + (1 /
2))) |
27 | 26 | breq2d 3994 |
. 2
⊢ (𝑁 ∈ ℤ → (0 ≤
(((2 · 𝑁) + 1) / 2)
↔ 0 ≤ (𝑁 + (1 /
2)))) |
28 | | zre 9195 |
. . . 4
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
29 | | halfre 9070 |
. . . . 5
⊢ (1 / 2)
∈ ℝ |
30 | 29 | a1i 9 |
. . . 4
⊢ (𝑁 ∈ ℤ → (1 / 2)
∈ ℝ) |
31 | 28, 30 | readdcld 7928 |
. . 3
⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) ∈
ℝ) |
32 | | halfge0 9073 |
. . . 4
⊢ 0 ≤ (1
/ 2) |
33 | 28, 30 | addge01d 8431 |
. . . 4
⊢ (𝑁 ∈ ℤ → (0 ≤
(1 / 2) ↔ 𝑁 ≤
(𝑁 + (1 /
2)))) |
34 | 32, 33 | mpbii 147 |
. . 3
⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + (1 / 2))) |
35 | | 1red 7914 |
. . . 4
⊢ (𝑁 ∈ ℤ → 1 ∈
ℝ) |
36 | | halflt1 9074 |
. . . . 5
⊢ (1 / 2)
< 1 |
37 | 36 | a1i 9 |
. . . 4
⊢ (𝑁 ∈ ℤ → (1 / 2)
< 1) |
38 | 30, 35, 28, 37 | ltadd2dd 8320 |
. . 3
⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) < (𝑁 + 1)) |
39 | | btwnzge0 10235 |
. . 3
⊢ ((((𝑁 + (1 / 2)) ∈ ℝ ∧
𝑁 ∈ ℤ) ∧
(𝑁 ≤ (𝑁 + (1 / 2)) ∧ (𝑁 + (1 / 2)) < (𝑁 + 1))) → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁)) |
40 | 31, 3, 34, 38, 39 | syl22anc 1229 |
. 2
⊢ (𝑁 ∈ ℤ → (0 ≤
(𝑁 + (1 / 2)) ↔ 0 ≤
𝑁)) |
41 | 12, 27, 40 | 3bitrd 213 |
1
⊢ (𝑁 ∈ ℤ → (0 ≤
((2 · 𝑁) + 1) ↔
0 ≤ 𝑁)) |