ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2tnp1ge0ge0 GIF version

Theorem 2tnp1ge0ge0 10373
Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2tnp1ge0ge0 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))

Proof of Theorem 2tnp1ge0ge0
StepHypRef Expression
1 2z 9348 . . . . . . 7 2 ∈ ℤ
21a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3 id 19 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
42, 3zmulcld 9448 . . . . 5 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
54peano2zd 9445 . . . 4 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
65zred 9442 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℝ)
7 2re 9054 . . . 4 2 ∈ ℝ
87a1i 9 . . 3 (𝑁 ∈ ℤ → 2 ∈ ℝ)
9 2pos 9075 . . . 4 0 < 2
109a1i 9 . . 3 (𝑁 ∈ ℤ → 0 < 2)
11 ge0div 8892 . . 3 ((((2 · 𝑁) + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2)))
126, 8, 10, 11syl3anc 1249 . 2 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2)))
134zcnd 9443 . . . . 5 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
14 1cnd 8037 . . . . 5 (𝑁 ∈ ℤ → 1 ∈ ℂ)
15 2cn 9055 . . . . . . 7 2 ∈ ℂ
16 2ap0 9077 . . . . . . 7 2 # 0
1715, 16pm3.2i 272 . . . . . 6 (2 ∈ ℂ ∧ 2 # 0)
1817a1i 9 . . . . 5 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 # 0))
19 divdirap 8718 . . . . 5 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
2013, 14, 18, 19syl3anc 1249 . . . 4 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
21 zcn 9325 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
22 2cnd 9057 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
2316a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 2 # 0)
2421, 22, 23divcanap3d 8816 . . . . 5 (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁)
2524oveq1d 5934 . . . 4 (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
2620, 25eqtrd 2226 . . 3 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
2726breq2d 4042 . 2 (𝑁 ∈ ℤ → (0 ≤ (((2 · 𝑁) + 1) / 2) ↔ 0 ≤ (𝑁 + (1 / 2))))
28 zre 9324 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
29 halfre 9198 . . . . 5 (1 / 2) ∈ ℝ
3029a1i 9 . . . 4 (𝑁 ∈ ℤ → (1 / 2) ∈ ℝ)
3128, 30readdcld 8051 . . 3 (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) ∈ ℝ)
32 halfge0 9201 . . . 4 0 ≤ (1 / 2)
3328, 30addge01d 8554 . . . 4 (𝑁 ∈ ℤ → (0 ≤ (1 / 2) ↔ 𝑁 ≤ (𝑁 + (1 / 2))))
3432, 33mpbii 148 . . 3 (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + (1 / 2)))
35 1red 8036 . . . 4 (𝑁 ∈ ℤ → 1 ∈ ℝ)
36 halflt1 9202 . . . . 5 (1 / 2) < 1
3736a1i 9 . . . 4 (𝑁 ∈ ℤ → (1 / 2) < 1)
3830, 35, 28, 37ltadd2dd 8443 . . 3 (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) < (𝑁 + 1))
39 btwnzge0 10372 . . 3 ((((𝑁 + (1 / 2)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ (𝑁 + (1 / 2)) ∧ (𝑁 + (1 / 2)) < (𝑁 + 1))) → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁))
4031, 3, 34, 38, 39syl22anc 1250 . 2 (𝑁 ∈ ℤ → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁))
4112, 27, 403bitrd 214 1 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164   class class class wbr 4030  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cle 8057   # cap 8602   / cdiv 8693  2c2 9035  cz 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321
This theorem is referenced by:  oddnn02np1  12024
  Copyright terms: Public domain W3C validator