ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2tnp1ge0ge0 GIF version

Theorem 2tnp1ge0ge0 10104
Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2tnp1ge0ge0 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))

Proof of Theorem 2tnp1ge0ge0
StepHypRef Expression
1 2z 9105 . . . . . . 7 2 ∈ ℤ
21a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3 id 19 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
42, 3zmulcld 9202 . . . . 5 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
54peano2zd 9199 . . . 4 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
65zred 9196 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℝ)
7 2re 8813 . . . 4 2 ∈ ℝ
87a1i 9 . . 3 (𝑁 ∈ ℤ → 2 ∈ ℝ)
9 2pos 8834 . . . 4 0 < 2
109a1i 9 . . 3 (𝑁 ∈ ℤ → 0 < 2)
11 ge0div 8652 . . 3 ((((2 · 𝑁) + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2)))
126, 8, 10, 11syl3anc 1217 . 2 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2)))
134zcnd 9197 . . . . 5 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
14 1cnd 7805 . . . . 5 (𝑁 ∈ ℤ → 1 ∈ ℂ)
15 2cn 8814 . . . . . . 7 2 ∈ ℂ
16 2ap0 8836 . . . . . . 7 2 # 0
1715, 16pm3.2i 270 . . . . . 6 (2 ∈ ℂ ∧ 2 # 0)
1817a1i 9 . . . . 5 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 # 0))
19 divdirap 8480 . . . . 5 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
2013, 14, 18, 19syl3anc 1217 . . . 4 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
21 zcn 9082 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
22 2cnd 8816 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
2316a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 2 # 0)
2421, 22, 23divcanap3d 8578 . . . . 5 (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁)
2524oveq1d 5796 . . . 4 (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
2620, 25eqtrd 2173 . . 3 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
2726breq2d 3948 . 2 (𝑁 ∈ ℤ → (0 ≤ (((2 · 𝑁) + 1) / 2) ↔ 0 ≤ (𝑁 + (1 / 2))))
28 zre 9081 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
29 halfre 8956 . . . . 5 (1 / 2) ∈ ℝ
3029a1i 9 . . . 4 (𝑁 ∈ ℤ → (1 / 2) ∈ ℝ)
3128, 30readdcld 7818 . . 3 (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) ∈ ℝ)
32 halfge0 8959 . . . 4 0 ≤ (1 / 2)
3328, 30addge01d 8318 . . . 4 (𝑁 ∈ ℤ → (0 ≤ (1 / 2) ↔ 𝑁 ≤ (𝑁 + (1 / 2))))
3432, 33mpbii 147 . . 3 (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + (1 / 2)))
35 1red 7804 . . . 4 (𝑁 ∈ ℤ → 1 ∈ ℝ)
36 halflt1 8960 . . . . 5 (1 / 2) < 1
3736a1i 9 . . . 4 (𝑁 ∈ ℤ → (1 / 2) < 1)
3830, 35, 28, 37ltadd2dd 8207 . . 3 (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) < (𝑁 + 1))
39 btwnzge0 10103 . . 3 ((((𝑁 + (1 / 2)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ (𝑁 + (1 / 2)) ∧ (𝑁 + (1 / 2)) < (𝑁 + 1))) → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁))
4031, 3, 34, 38, 39syl22anc 1218 . 2 (𝑁 ∈ ℤ → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁))
4112, 27, 403bitrd 213 1 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481   class class class wbr 3936  (class class class)co 5781  cc 7641  cr 7642  0cc0 7643  1c1 7644   + caddc 7646   · cmul 7648   < clt 7823  cle 7824   # cap 8366   / cdiv 8455  2c2 8794  cz 9077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-br 3937  df-opab 3997  df-id 4222  df-po 4225  df-iso 4226  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-iota 5095  df-fun 5132  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-n0 9001  df-z 9078
This theorem is referenced by:  oddnn02np1  11611
  Copyright terms: Public domain W3C validator