ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2tnp1ge0ge0 GIF version

Theorem 2tnp1ge0ge0 10257
Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2tnp1ge0ge0 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))

Proof of Theorem 2tnp1ge0ge0
StepHypRef Expression
1 2z 9240 . . . . . . 7 2 ∈ ℤ
21a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3 id 19 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
42, 3zmulcld 9340 . . . . 5 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
54peano2zd 9337 . . . 4 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
65zred 9334 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℝ)
7 2re 8948 . . . 4 2 ∈ ℝ
87a1i 9 . . 3 (𝑁 ∈ ℤ → 2 ∈ ℝ)
9 2pos 8969 . . . 4 0 < 2
109a1i 9 . . 3 (𝑁 ∈ ℤ → 0 < 2)
11 ge0div 8787 . . 3 ((((2 · 𝑁) + 1) ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2)))
126, 8, 10, 11syl3anc 1233 . 2 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ (((2 · 𝑁) + 1) / 2)))
134zcnd 9335 . . . . 5 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
14 1cnd 7936 . . . . 5 (𝑁 ∈ ℤ → 1 ∈ ℂ)
15 2cn 8949 . . . . . . 7 2 ∈ ℂ
16 2ap0 8971 . . . . . . 7 2 # 0
1715, 16pm3.2i 270 . . . . . 6 (2 ∈ ℂ ∧ 2 # 0)
1817a1i 9 . . . . 5 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 # 0))
19 divdirap 8614 . . . . 5 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
2013, 14, 18, 19syl3anc 1233 . . . 4 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
21 zcn 9217 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
22 2cnd 8951 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
2316a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 2 # 0)
2421, 22, 23divcanap3d 8712 . . . . 5 (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁)
2524oveq1d 5868 . . . 4 (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
2620, 25eqtrd 2203 . . 3 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
2726breq2d 4001 . 2 (𝑁 ∈ ℤ → (0 ≤ (((2 · 𝑁) + 1) / 2) ↔ 0 ≤ (𝑁 + (1 / 2))))
28 zre 9216 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
29 halfre 9091 . . . . 5 (1 / 2) ∈ ℝ
3029a1i 9 . . . 4 (𝑁 ∈ ℤ → (1 / 2) ∈ ℝ)
3128, 30readdcld 7949 . . 3 (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) ∈ ℝ)
32 halfge0 9094 . . . 4 0 ≤ (1 / 2)
3328, 30addge01d 8452 . . . 4 (𝑁 ∈ ℤ → (0 ≤ (1 / 2) ↔ 𝑁 ≤ (𝑁 + (1 / 2))))
3432, 33mpbii 147 . . 3 (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + (1 / 2)))
35 1red 7935 . . . 4 (𝑁 ∈ ℤ → 1 ∈ ℝ)
36 halflt1 9095 . . . . 5 (1 / 2) < 1
3736a1i 9 . . . 4 (𝑁 ∈ ℤ → (1 / 2) < 1)
3830, 35, 28, 37ltadd2dd 8341 . . 3 (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) < (𝑁 + 1))
39 btwnzge0 10256 . . 3 ((((𝑁 + (1 / 2)) ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ (𝑁 + (1 / 2)) ∧ (𝑁 + (1 / 2)) < (𝑁 + 1))) → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁))
4031, 3, 34, 38, 39syl22anc 1234 . 2 (𝑁 ∈ ℤ → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁))
4112, 27, 403bitrd 213 1 (𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955   # cap 8500   / cdiv 8589  2c2 8929  cz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213
This theorem is referenced by:  oddnn02np1  11839
  Copyright terms: Public domain W3C validator