Proof of Theorem 2tnp1ge0ge0
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 2z 9354 | 
. . . . . . 7
⊢ 2 ∈
ℤ | 
| 2 | 1 | a1i 9 | 
. . . . . 6
⊢ (𝑁 ∈ ℤ → 2 ∈
ℤ) | 
| 3 |   | id 19 | 
. . . . . 6
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℤ) | 
| 4 | 2, 3 | zmulcld 9454 | 
. . . . 5
⊢ (𝑁 ∈ ℤ → (2
· 𝑁) ∈
ℤ) | 
| 5 | 4 | peano2zd 9451 | 
. . . 4
⊢ (𝑁 ∈ ℤ → ((2
· 𝑁) + 1) ∈
ℤ) | 
| 6 | 5 | zred 9448 | 
. . 3
⊢ (𝑁 ∈ ℤ → ((2
· 𝑁) + 1) ∈
ℝ) | 
| 7 |   | 2re 9060 | 
. . . 4
⊢ 2 ∈
ℝ | 
| 8 | 7 | a1i 9 | 
. . 3
⊢ (𝑁 ∈ ℤ → 2 ∈
ℝ) | 
| 9 |   | 2pos 9081 | 
. . . 4
⊢ 0 <
2 | 
| 10 | 9 | a1i 9 | 
. . 3
⊢ (𝑁 ∈ ℤ → 0 <
2) | 
| 11 |   | ge0div 8898 | 
. . 3
⊢ ((((2
· 𝑁) + 1) ∈
ℝ ∧ 2 ∈ ℝ ∧ 0 < 2) → (0 ≤ ((2 ·
𝑁) + 1) ↔ 0 ≤ (((2
· 𝑁) + 1) /
2))) | 
| 12 | 6, 8, 10, 11 | syl3anc 1249 | 
. 2
⊢ (𝑁 ∈ ℤ → (0 ≤
((2 · 𝑁) + 1) ↔
0 ≤ (((2 · 𝑁) +
1) / 2))) | 
| 13 | 4 | zcnd 9449 | 
. . . . 5
⊢ (𝑁 ∈ ℤ → (2
· 𝑁) ∈
ℂ) | 
| 14 |   | 1cnd 8042 | 
. . . . 5
⊢ (𝑁 ∈ ℤ → 1 ∈
ℂ) | 
| 15 |   | 2cn 9061 | 
. . . . . . 7
⊢ 2 ∈
ℂ | 
| 16 |   | 2ap0 9083 | 
. . . . . . 7
⊢ 2 #
0 | 
| 17 | 15, 16 | pm3.2i 272 | 
. . . . . 6
⊢ (2 ∈
ℂ ∧ 2 # 0) | 
| 18 | 17 | a1i 9 | 
. . . . 5
⊢ (𝑁 ∈ ℤ → (2 ∈
ℂ ∧ 2 # 0)) | 
| 19 |   | divdirap 8724 | 
. . . . 5
⊢ (((2
· 𝑁) ∈ ℂ
∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((2
· 𝑁) + 1) / 2) =
(((2 · 𝑁) / 2) + (1
/ 2))) | 
| 20 | 13, 14, 18, 19 | syl3anc 1249 | 
. . . 4
⊢ (𝑁 ∈ ℤ → (((2
· 𝑁) + 1) / 2) =
(((2 · 𝑁) / 2) + (1
/ 2))) | 
| 21 |   | zcn 9331 | 
. . . . . 6
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) | 
| 22 |   | 2cnd 9063 | 
. . . . . 6
⊢ (𝑁 ∈ ℤ → 2 ∈
ℂ) | 
| 23 | 16 | a1i 9 | 
. . . . . 6
⊢ (𝑁 ∈ ℤ → 2 #
0) | 
| 24 | 21, 22, 23 | divcanap3d 8822 | 
. . . . 5
⊢ (𝑁 ∈ ℤ → ((2
· 𝑁) / 2) = 𝑁) | 
| 25 | 24 | oveq1d 5937 | 
. . . 4
⊢ (𝑁 ∈ ℤ → (((2
· 𝑁) / 2) + (1 / 2))
= (𝑁 + (1 /
2))) | 
| 26 | 20, 25 | eqtrd 2229 | 
. . 3
⊢ (𝑁 ∈ ℤ → (((2
· 𝑁) + 1) / 2) =
(𝑁 + (1 /
2))) | 
| 27 | 26 | breq2d 4045 | 
. 2
⊢ (𝑁 ∈ ℤ → (0 ≤
(((2 · 𝑁) + 1) / 2)
↔ 0 ≤ (𝑁 + (1 /
2)))) | 
| 28 |   | zre 9330 | 
. . . 4
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) | 
| 29 |   | halfre 9204 | 
. . . . 5
⊢ (1 / 2)
∈ ℝ | 
| 30 | 29 | a1i 9 | 
. . . 4
⊢ (𝑁 ∈ ℤ → (1 / 2)
∈ ℝ) | 
| 31 | 28, 30 | readdcld 8056 | 
. . 3
⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) ∈
ℝ) | 
| 32 |   | halfge0 9207 | 
. . . 4
⊢ 0 ≤ (1
/ 2) | 
| 33 | 28, 30 | addge01d 8560 | 
. . . 4
⊢ (𝑁 ∈ ℤ → (0 ≤
(1 / 2) ↔ 𝑁 ≤
(𝑁 + (1 /
2)))) | 
| 34 | 32, 33 | mpbii 148 | 
. . 3
⊢ (𝑁 ∈ ℤ → 𝑁 ≤ (𝑁 + (1 / 2))) | 
| 35 |   | 1red 8041 | 
. . . 4
⊢ (𝑁 ∈ ℤ → 1 ∈
ℝ) | 
| 36 |   | halflt1 9208 | 
. . . . 5
⊢ (1 / 2)
< 1 | 
| 37 | 36 | a1i 9 | 
. . . 4
⊢ (𝑁 ∈ ℤ → (1 / 2)
< 1) | 
| 38 | 30, 35, 28, 37 | ltadd2dd 8449 | 
. . 3
⊢ (𝑁 ∈ ℤ → (𝑁 + (1 / 2)) < (𝑁 + 1)) | 
| 39 |   | btwnzge0 10390 | 
. . 3
⊢ ((((𝑁 + (1 / 2)) ∈ ℝ ∧
𝑁 ∈ ℤ) ∧
(𝑁 ≤ (𝑁 + (1 / 2)) ∧ (𝑁 + (1 / 2)) < (𝑁 + 1))) → (0 ≤ (𝑁 + (1 / 2)) ↔ 0 ≤ 𝑁)) | 
| 40 | 31, 3, 34, 38, 39 | syl22anc 1250 | 
. 2
⊢ (𝑁 ∈ ℤ → (0 ≤
(𝑁 + (1 / 2)) ↔ 0 ≤
𝑁)) | 
| 41 | 12, 27, 40 | 3bitrd 214 | 
1
⊢ (𝑁 ∈ ℤ → (0 ≤
((2 · 𝑁) + 1) ↔
0 ≤ 𝑁)) |