ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  met0 GIF version

Theorem met0 12563
Description: The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM, 30-Aug-2006.)
Assertion
Ref Expression
met0 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)

Proof of Theorem met0
StepHypRef Expression
1 metxmet 12554 . 2 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2 xmet0 12562 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
31, 2sylan 281 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  cfv 5127  (class class class)co 5778  0cc0 7640  ∞Metcxmet 12179  Metcmet 12180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-cnex 7731  ax-resscn 7732  ax-1re 7734  ax-addrcl 7737  ax-rnegex 7749
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-if 3476  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-id 4219  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-fv 5135  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-map 6548  df-pnf 7822  df-mnf 7823  df-xr 7824  df-xadd 9586  df-xmet 12187  df-met 12188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator