| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mndfo | GIF version | ||
| Description: The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.) |
| Ref | Expression |
|---|---|
| mndfo.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndfo.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mndfo | ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndfo.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2196 | . . . 4 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
| 3 | 1, 2 | mndpfo 13079 | . . 3 ⊢ (𝐺 ∈ Mnd → (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵) |
| 4 | 3 | adantr 276 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵) |
| 5 | mndfo.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 6 | 1, 5, 2 | plusfeqg 13007 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝐺) = + ) |
| 7 | 6 | eqcomd 2202 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + = (+𝑓‘𝐺)) |
| 8 | foeq1 5476 | . . 3 ⊢ ( + = (+𝑓‘𝐺) → ( + :(𝐵 × 𝐵)–onto→𝐵 ↔ (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵)) | |
| 9 | 7, 8 | syl 14 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → ( + :(𝐵 × 𝐵)–onto→𝐵 ↔ (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵)) |
| 10 | 4, 9 | mpbird 167 | 1 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 × cxp 4661 Fn wfn 5253 –onto→wfo 5256 ‘cfv 5258 Basecbs 12678 +gcplusg 12755 +𝑓cplusf 12996 Mndcmnd 13057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-plusf 12998 df-mgm 12999 df-sgrp 13045 df-mnd 13058 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |