Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mndfo | GIF version |
Description: The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.) |
Ref | Expression |
---|---|
mndfo.b | ⊢ 𝐵 = (Base‘𝐺) |
mndfo.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mndfo | ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndfo.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2170 | . . . 4 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
3 | 1, 2 | mndpfo 12674 | . . 3 ⊢ (𝐺 ∈ Mnd → (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵) |
4 | 3 | adantr 274 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵) |
5 | mndfo.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
6 | 1, 5, 2 | plusfeqg 12618 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → (+𝑓‘𝐺) = + ) |
7 | 6 | eqcomd 2176 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + = (+𝑓‘𝐺)) |
8 | foeq1 5416 | . . 3 ⊢ ( + = (+𝑓‘𝐺) → ( + :(𝐵 × 𝐵)–onto→𝐵 ↔ (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵)) | |
9 | 7, 8 | syl 14 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → ( + :(𝐵 × 𝐵)–onto→𝐵 ↔ (+𝑓‘𝐺):(𝐵 × 𝐵)–onto→𝐵)) |
10 | 4, 9 | mpbird 166 | 1 ⊢ ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 × cxp 4609 Fn wfn 5193 –onto→wfo 5196 ‘cfv 5198 Basecbs 12416 +gcplusg 12480 +𝑓cplusf 12607 Mndcmnd 12652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 df-plusf 12609 df-mgm 12610 df-sgrp 12643 df-mnd 12653 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |