ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndlid GIF version

Theorem mndlid 13337
Description: The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
mndlrid.b 𝐵 = (Base‘𝐺)
mndlrid.p + = (+g𝐺)
mndlrid.o 0 = (0g𝐺)
Assertion
Ref Expression
mndlid ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)

Proof of Theorem mndlid
StepHypRef Expression
1 mndlrid.b . . 3 𝐵 = (Base‘𝐺)
2 mndlrid.p . . 3 + = (+g𝐺)
3 mndlrid.o . . 3 0 = (0g𝐺)
41, 2, 3mndlrid 13336 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
54simpld 112 1 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  cfv 5279  (class class class)co 5956  Basecbs 12902  +gcplusg 12979  0gc0g 13158  Mndcmnd 13318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-cnex 8031  ax-resscn 8032  ax-1re 8034  ax-addrcl 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-iota 5240  df-fun 5281  df-fn 5282  df-fv 5287  df-riota 5911  df-ov 5959  df-inn 9052  df-2 9110  df-ndx 12905  df-slot 12906  df-base 12908  df-plusg 12992  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319
This theorem is referenced by:  issubmnd  13344  ress0g  13345  mndinvmod  13347  prdsidlem  13349  imasmnd  13355  0subm  13386  0mhm  13388  gsumfzz  13397  dfgrp2  13429  grplid  13433  dfgrp3m  13501  mhmid  13521  mhmmnd  13522  mulgnn0p1  13539  mulgnn0z  13555  mulgnn0dir  13558  gsumfzmptfidmadd  13745
  Copyright terms: Public domain W3C validator