![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > modqfrac | GIF version |
Description: The fractional part of a number is the number modulo 1. (Contributed by Jim Kingdon, 18-Oct-2021.) |
Ref | Expression |
---|---|
modqfrac | ⊢ (𝐴 ∈ ℚ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9346 | . . . 4 ⊢ 1 ∈ ℤ | |
2 | zq 9694 | . . . 4 ⊢ (1 ∈ ℤ → 1 ∈ ℚ) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 1 ∈ ℚ |
4 | 0lt1 8148 | . . 3 ⊢ 0 < 1 | |
5 | modqval 10398 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 1 ∈ ℚ ∧ 0 < 1) → (𝐴 mod 1) = (𝐴 − (1 · (⌊‘(𝐴 / 1))))) | |
6 | 3, 4, 5 | mp3an23 1340 | . 2 ⊢ (𝐴 ∈ ℚ → (𝐴 mod 1) = (𝐴 − (1 · (⌊‘(𝐴 / 1))))) |
7 | qcn 9702 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
8 | 7 | div1d 8801 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → (𝐴 / 1) = 𝐴) |
9 | 8 | fveq2d 5559 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (⌊‘(𝐴 / 1)) = (⌊‘𝐴)) |
10 | 9 | oveq2d 5935 | . . . 4 ⊢ (𝐴 ∈ ℚ → (1 · (⌊‘(𝐴 / 1))) = (1 · (⌊‘𝐴))) |
11 | flqcl 10345 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
12 | 11 | zcnd 9443 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℂ) |
13 | 12 | mulid2d 8040 | . . . 4 ⊢ (𝐴 ∈ ℚ → (1 · (⌊‘𝐴)) = (⌊‘𝐴)) |
14 | 10, 13 | eqtrd 2226 | . . 3 ⊢ (𝐴 ∈ ℚ → (1 · (⌊‘(𝐴 / 1))) = (⌊‘𝐴)) |
15 | 14 | oveq2d 5935 | . 2 ⊢ (𝐴 ∈ ℚ → (𝐴 − (1 · (⌊‘(𝐴 / 1)))) = (𝐴 − (⌊‘𝐴))) |
16 | 6, 15 | eqtrd 2226 | 1 ⊢ (𝐴 ∈ ℚ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 0cc0 7874 1c1 7875 · cmul 7879 < clt 8056 − cmin 8192 / cdiv 8693 ℤcz 9320 ℚcq 9687 ⌊cfl 10340 mod cmo 10396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-n0 9244 df-z 9321 df-q 9688 df-rp 9723 df-fl 10342 df-mod 10397 |
This theorem is referenced by: flqmod 10412 intqfrac 10413 zmod10 10414 |
Copyright terms: Public domain | W3C validator |