ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqfrac GIF version

Theorem modqfrac 10429
Description: The fractional part of a number is the number modulo 1. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
modqfrac (𝐴 ∈ ℚ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴)))

Proof of Theorem modqfrac
StepHypRef Expression
1 1z 9352 . . . 4 1 ∈ ℤ
2 zq 9700 . . . 4 (1 ∈ ℤ → 1 ∈ ℚ)
31, 2ax-mp 5 . . 3 1 ∈ ℚ
4 0lt1 8153 . . 3 0 < 1
5 modqval 10416 . . 3 ((𝐴 ∈ ℚ ∧ 1 ∈ ℚ ∧ 0 < 1) → (𝐴 mod 1) = (𝐴 − (1 · (⌊‘(𝐴 / 1)))))
63, 4, 5mp3an23 1340 . 2 (𝐴 ∈ ℚ → (𝐴 mod 1) = (𝐴 − (1 · (⌊‘(𝐴 / 1)))))
7 qcn 9708 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
87div1d 8807 . . . . . 6 (𝐴 ∈ ℚ → (𝐴 / 1) = 𝐴)
98fveq2d 5562 . . . . 5 (𝐴 ∈ ℚ → (⌊‘(𝐴 / 1)) = (⌊‘𝐴))
109oveq2d 5938 . . . 4 (𝐴 ∈ ℚ → (1 · (⌊‘(𝐴 / 1))) = (1 · (⌊‘𝐴)))
11 flqcl 10363 . . . . . 6 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
1211zcnd 9449 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℂ)
1312mulid2d 8045 . . . 4 (𝐴 ∈ ℚ → (1 · (⌊‘𝐴)) = (⌊‘𝐴))
1410, 13eqtrd 2229 . . 3 (𝐴 ∈ ℚ → (1 · (⌊‘(𝐴 / 1))) = (⌊‘𝐴))
1514oveq2d 5938 . 2 (𝐴 ∈ ℚ → (𝐴 − (1 · (⌊‘(𝐴 / 1)))) = (𝐴 − (⌊‘𝐴)))
166, 15eqtrd 2229 1 (𝐴 ∈ ℚ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  0cc0 7879  1c1 7880   · cmul 7884   < clt 8061  cmin 8197   / cdiv 8699  cz 9326  cq 9693  cfl 10358   mod cmo 10414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415
This theorem is referenced by:  flqmod  10430  intqfrac  10431  zmod10  10432
  Copyright terms: Public domain W3C validator