![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > modqfrac | GIF version |
Description: The fractional part of a number is the number modulo 1. (Contributed by Jim Kingdon, 18-Oct-2021.) |
Ref | Expression |
---|---|
modqfrac | โข (๐ด โ โ โ (๐ด mod 1) = (๐ด โ (โโ๐ด))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9298 | . . . 4 โข 1 โ โค | |
2 | zq 9645 | . . . 4 โข (1 โ โค โ 1 โ โ) | |
3 | 1, 2 | ax-mp 5 | . . 3 โข 1 โ โ |
4 | 0lt1 8103 | . . 3 โข 0 < 1 | |
5 | modqval 10343 | . . 3 โข ((๐ด โ โ โง 1 โ โ โง 0 < 1) โ (๐ด mod 1) = (๐ด โ (1 ยท (โโ(๐ด / 1))))) | |
6 | 3, 4, 5 | mp3an23 1340 | . 2 โข (๐ด โ โ โ (๐ด mod 1) = (๐ด โ (1 ยท (โโ(๐ด / 1))))) |
7 | qcn 9653 | . . . . . . 7 โข (๐ด โ โ โ ๐ด โ โ) | |
8 | 7 | div1d 8756 | . . . . . 6 โข (๐ด โ โ โ (๐ด / 1) = ๐ด) |
9 | 8 | fveq2d 5534 | . . . . 5 โข (๐ด โ โ โ (โโ(๐ด / 1)) = (โโ๐ด)) |
10 | 9 | oveq2d 5907 | . . . 4 โข (๐ด โ โ โ (1 ยท (โโ(๐ด / 1))) = (1 ยท (โโ๐ด))) |
11 | flqcl 10292 | . . . . . 6 โข (๐ด โ โ โ (โโ๐ด) โ โค) | |
12 | 11 | zcnd 9395 | . . . . 5 โข (๐ด โ โ โ (โโ๐ด) โ โ) |
13 | 12 | mulid2d 7995 | . . . 4 โข (๐ด โ โ โ (1 ยท (โโ๐ด)) = (โโ๐ด)) |
14 | 10, 13 | eqtrd 2222 | . . 3 โข (๐ด โ โ โ (1 ยท (โโ(๐ด / 1))) = (โโ๐ด)) |
15 | 14 | oveq2d 5907 | . 2 โข (๐ด โ โ โ (๐ด โ (1 ยท (โโ(๐ด / 1)))) = (๐ด โ (โโ๐ด))) |
16 | 6, 15 | eqtrd 2222 | 1 โข (๐ด โ โ โ (๐ด mod 1) = (๐ด โ (โโ๐ด))) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 = wceq 1364 โ wcel 2160 class class class wbr 4018 โcfv 5231 (class class class)co 5891 0cc0 7830 1c1 7831 ยท cmul 7835 < clt 8011 โ cmin 8147 / cdiv 8648 โคcz 9272 โcq 9638 โcfl 10287 mod cmo 10341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7921 ax-resscn 7922 ax-1cn 7923 ax-1re 7924 ax-icn 7925 ax-addcl 7926 ax-addrcl 7927 ax-mulcl 7928 ax-mulrcl 7929 ax-addcom 7930 ax-mulcom 7931 ax-addass 7932 ax-mulass 7933 ax-distr 7934 ax-i2m1 7935 ax-0lt1 7936 ax-1rid 7937 ax-0id 7938 ax-rnegex 7939 ax-precex 7940 ax-cnre 7941 ax-pre-ltirr 7942 ax-pre-ltwlin 7943 ax-pre-lttrn 7944 ax-pre-apti 7945 ax-pre-ltadd 7946 ax-pre-mulgt0 7947 ax-pre-mulext 7948 ax-arch 7949 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-po 4311 df-iso 4312 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-pnf 8013 df-mnf 8014 df-xr 8015 df-ltxr 8016 df-le 8017 df-sub 8149 df-neg 8150 df-reap 8551 df-ap 8558 df-div 8649 df-inn 8939 df-n0 9196 df-z 9273 df-q 9639 df-rp 9673 df-fl 10289 df-mod 10342 |
This theorem is referenced by: flqmod 10357 intqfrac 10358 zmod10 10359 |
Copyright terms: Public domain | W3C validator |