ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imre GIF version

Theorem imre 10863
Description: The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imre (๐ด โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ด) = (โ„œโ€˜(-i ยท ๐ด)))

Proof of Theorem imre
StepHypRef Expression
1 imval 10862 . 2 (๐ด โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ด) = (โ„œโ€˜(๐ด / i)))
2 ax-icn 7909 . . . . 5 i โˆˆ โ„‚
3 iap0 9145 . . . . 5 i # 0
4 divrecap2 8649 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง i โˆˆ โ„‚ โˆง i # 0) โ†’ (๐ด / i) = ((1 / i) ยท ๐ด))
52, 3, 4mp3an23 1329 . . . 4 (๐ด โˆˆ โ„‚ โ†’ (๐ด / i) = ((1 / i) ยท ๐ด))
6 irec 10623 . . . . 5 (1 / i) = -i
76oveq1i 5888 . . . 4 ((1 / i) ยท ๐ด) = (-i ยท ๐ด)
85, 7eqtrdi 2226 . . 3 (๐ด โˆˆ โ„‚ โ†’ (๐ด / i) = (-i ยท ๐ด))
98fveq2d 5521 . 2 (๐ด โˆˆ โ„‚ โ†’ (โ„œโ€˜(๐ด / i)) = (โ„œโ€˜(-i ยท ๐ด)))
101, 9eqtrd 2210 1 (๐ด โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ด) = (โ„œโ€˜(-i ยท ๐ด)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   = wceq 1353   โˆˆ wcel 2148   class class class wbr 4005  โ€˜cfv 5218  (class class class)co 5878  โ„‚cc 7812  0cc0 7814  1c1 7815  ici 7816   ยท cmul 7819  -cneg 8132   # cap 8541   / cdiv 8632  โ„œcre 10852  โ„‘cim 10853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-2 8981  df-cj 10854  df-re 10855  df-im 10856
This theorem is referenced by:  imcl  10866  absimle  11096  recan  11121
  Copyright terms: Public domain W3C validator