ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulneg2i GIF version

Theorem mulneg2i 8381
Description: Product with negative is negative of product. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1.1 ๐ด โˆˆ โ„‚
mulneg.2 ๐ต โˆˆ โ„‚
Assertion
Ref Expression
mulneg2i (๐ด ยท -๐ต) = -(๐ด ยท ๐ต)

Proof of Theorem mulneg2i
StepHypRef Expression
1 mulm1.1 . 2 ๐ด โˆˆ โ„‚
2 mulneg.2 . 2 ๐ต โˆˆ โ„‚
3 mulneg2 8372 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด ยท -๐ต) = -(๐ด ยท ๐ต))
41, 2, 3mp2an 426 1 (๐ด ยท -๐ต) = -(๐ด ยท ๐ต)
Colors of variables: wff set class
Syntax hints:   = wceq 1364   โˆˆ wcel 2160  (class class class)co 5891  โ„‚cc 7828   ยท cmul 7835  -cneg 8148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-setind 4551  ax-resscn 7922  ax-1cn 7923  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-addcom 7930  ax-mulcom 7931  ax-addass 7932  ax-distr 7934  ax-i2m1 7935  ax-0id 7938  ax-rnegex 7939  ax-cnre 7941
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-sub 8149  df-neg 8150
This theorem is referenced by:  irec  10639  absi  11087  lgsdir2lem5  14836
  Copyright terms: Public domain W3C validator