| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exp8 | GIF version | ||
| Description: Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| 2exp8 | ⊢ (2↑8) = ;;256 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 9394 | . 2 ⊢ 2 ∈ ℕ0 | |
| 2 | 4nn0 9396 | . 2 ⊢ 4 ∈ ℕ0 | |
| 3 | 2 | nn0cni 9389 | . . 3 ⊢ 4 ∈ ℂ |
| 4 | 2cn 9189 | . . 3 ⊢ 2 ∈ ℂ | |
| 5 | 4t2e8 9277 | . . 3 ⊢ (4 · 2) = 8 | |
| 6 | 3, 4, 5 | mulcomli 8161 | . 2 ⊢ (2 · 4) = 8 |
| 7 | 2exp4 12962 | . 2 ⊢ (2↑4) = ;16 | |
| 8 | 1nn0 9393 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 9 | 6nn0 9398 | . . . 4 ⊢ 6 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 9600 | . . 3 ⊢ ;16 ∈ ℕ0 |
| 11 | eqid 2229 | . . 3 ⊢ ;16 = ;16 | |
| 12 | 9nn0 9401 | . . 3 ⊢ 9 ∈ ℕ0 | |
| 13 | 10 | nn0cni 9389 | . . . . 5 ⊢ ;16 ∈ ℂ |
| 14 | 13 | mulridi 8156 | . . . 4 ⊢ (;16 · 1) = ;16 |
| 15 | 1p1e2 9235 | . . . 4 ⊢ (1 + 1) = 2 | |
| 16 | 5nn0 9397 | . . . 4 ⊢ 5 ∈ ℕ0 | |
| 17 | 9cn 9206 | . . . . 5 ⊢ 9 ∈ ℂ | |
| 18 | 6cn 9200 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 19 | 9p6e15 9676 | . . . . 5 ⊢ (9 + 6) = ;15 | |
| 20 | 17, 18, 19 | addcomli 8299 | . . . 4 ⊢ (6 + 9) = ;15 |
| 21 | 8, 9, 12, 14, 15, 16, 20 | decaddci 9646 | . . 3 ⊢ ((;16 · 1) + 9) = ;25 |
| 22 | 3nn0 9395 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 23 | 18 | mullidi 8157 | . . . . . 6 ⊢ (1 · 6) = 6 |
| 24 | 23 | oveq1i 6017 | . . . . 5 ⊢ ((1 · 6) + 3) = (6 + 3) |
| 25 | 6p3e9 9269 | . . . . 5 ⊢ (6 + 3) = 9 | |
| 26 | 24, 25 | eqtri 2250 | . . . 4 ⊢ ((1 · 6) + 3) = 9 |
| 27 | 6t6e36 9693 | . . . 4 ⊢ (6 · 6) = ;36 | |
| 28 | 9, 8, 9, 11, 9, 22, 26, 27 | decmul1c 9650 | . . 3 ⊢ (;16 · 6) = ;96 |
| 29 | 10, 8, 9, 11, 9, 12, 21, 28 | decmul2c 9651 | . 2 ⊢ (;16 · ;16) = ;;256 |
| 30 | 1, 2, 6, 7, 29 | numexp2x 12956 | 1 ⊢ (2↑8) = ;;256 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6007 1c1 8008 + caddc 8010 · cmul 8012 2c2 9169 3c3 9170 4c4 9171 5c5 9172 6c6 9173 8c8 9175 9c9 9176 ;cdc 9586 ↑cexp 10768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-seqfrec 10678 df-exp 10769 |
| This theorem is referenced by: 2exp11 12967 2exp16 12968 |
| Copyright terms: Public domain | W3C validator |