| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exp8 | GIF version | ||
| Description: Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| 2exp8 | ⊢ (2↑8) = ;;256 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 9319 | . 2 ⊢ 2 ∈ ℕ0 | |
| 2 | 4nn0 9321 | . 2 ⊢ 4 ∈ ℕ0 | |
| 3 | 2 | nn0cni 9314 | . . 3 ⊢ 4 ∈ ℂ |
| 4 | 2cn 9114 | . . 3 ⊢ 2 ∈ ℂ | |
| 5 | 4t2e8 9202 | . . 3 ⊢ (4 · 2) = 8 | |
| 6 | 3, 4, 5 | mulcomli 8086 | . 2 ⊢ (2 · 4) = 8 |
| 7 | 2exp4 12798 | . 2 ⊢ (2↑4) = ;16 | |
| 8 | 1nn0 9318 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 9 | 6nn0 9323 | . . . 4 ⊢ 6 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 9525 | . . 3 ⊢ ;16 ∈ ℕ0 |
| 11 | eqid 2206 | . . 3 ⊢ ;16 = ;16 | |
| 12 | 9nn0 9326 | . . 3 ⊢ 9 ∈ ℕ0 | |
| 13 | 10 | nn0cni 9314 | . . . . 5 ⊢ ;16 ∈ ℂ |
| 14 | 13 | mulridi 8081 | . . . 4 ⊢ (;16 · 1) = ;16 |
| 15 | 1p1e2 9160 | . . . 4 ⊢ (1 + 1) = 2 | |
| 16 | 5nn0 9322 | . . . 4 ⊢ 5 ∈ ℕ0 | |
| 17 | 9cn 9131 | . . . . 5 ⊢ 9 ∈ ℂ | |
| 18 | 6cn 9125 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 19 | 9p6e15 9601 | . . . . 5 ⊢ (9 + 6) = ;15 | |
| 20 | 17, 18, 19 | addcomli 8224 | . . . 4 ⊢ (6 + 9) = ;15 |
| 21 | 8, 9, 12, 14, 15, 16, 20 | decaddci 9571 | . . 3 ⊢ ((;16 · 1) + 9) = ;25 |
| 22 | 3nn0 9320 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 23 | 18 | mullidi 8082 | . . . . . 6 ⊢ (1 · 6) = 6 |
| 24 | 23 | oveq1i 5961 | . . . . 5 ⊢ ((1 · 6) + 3) = (6 + 3) |
| 25 | 6p3e9 9194 | . . . . 5 ⊢ (6 + 3) = 9 | |
| 26 | 24, 25 | eqtri 2227 | . . . 4 ⊢ ((1 · 6) + 3) = 9 |
| 27 | 6t6e36 9618 | . . . 4 ⊢ (6 · 6) = ;36 | |
| 28 | 9, 8, 9, 11, 9, 22, 26, 27 | decmul1c 9575 | . . 3 ⊢ (;16 · 6) = ;96 |
| 29 | 10, 8, 9, 11, 9, 12, 21, 28 | decmul2c 9576 | . 2 ⊢ (;16 · ;16) = ;;256 |
| 30 | 1, 2, 6, 7, 29 | numexp2x 12792 | 1 ⊢ (2↑8) = ;;256 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5951 1c1 7933 + caddc 7935 · cmul 7937 2c2 9094 3c3 9095 4c4 9096 5c5 9097 6c6 9098 8c8 9100 9c9 9101 ;cdc 9511 ↑cexp 10690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-seqfrec 10600 df-exp 10691 |
| This theorem is referenced by: 2exp11 12803 2exp16 12804 |
| Copyright terms: Public domain | W3C validator |