ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neg0 GIF version

Theorem neg0 8338
Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.)
Assertion
Ref Expression
neg0 -0 = 0

Proof of Theorem neg0
StepHypRef Expression
1 df-neg 8266 . 2 -0 = (0 − 0)
2 0cn 8084 . . 3 0 ∈ ℂ
3 subid 8311 . . 3 (0 ∈ ℂ → (0 − 0) = 0)
42, 3ax-mp 5 . 2 (0 − 0) = 0
51, 4eqtri 2227 1 -0 = 0
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  (class class class)co 5957  cc 7943  0cc0 7945  cmin 8263  -cneg 8264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-setind 4593  ax-resscn 8037  ax-1cn 8038  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-sub 8265  df-neg 8266
This theorem is referenced by:  negeq0  8346  lt0neg1  8561  lt0neg2  8562  le0neg1  8563  le0neg2  8564  negap0  8723  neg1lt0  9164  elznn0  9407  znegcl  9423  xneg0  9973  expnegap0  10714  resqrexlemover  11396  sin0  12115  m1bits  12346  lcmneg  12471  pcneg  12723  mulgneg  13551  mulgneg2  13567  limcimolemlt  15211  lgsneg1  15577
  Copyright terms: Public domain W3C validator