| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neg0 | GIF version | ||
| Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| neg0 | ⊢ -0 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 8266 | . 2 ⊢ -0 = (0 − 0) | |
| 2 | 0cn 8084 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subid 8311 | . . 3 ⊢ (0 ∈ ℂ → (0 − 0) = 0) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (0 − 0) = 0 |
| 5 | 1, 4 | eqtri 2227 | 1 ⊢ -0 = 0 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5957 ℂcc 7943 0cc0 7945 − cmin 8263 -cneg 8264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-setind 4593 ax-resscn 8037 ax-1cn 8038 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-sub 8265 df-neg 8266 |
| This theorem is referenced by: negeq0 8346 lt0neg1 8561 lt0neg2 8562 le0neg1 8563 le0neg2 8564 negap0 8723 neg1lt0 9164 elznn0 9407 znegcl 9423 xneg0 9973 expnegap0 10714 resqrexlemover 11396 sin0 12115 m1bits 12346 lcmneg 12471 pcneg 12723 mulgneg 13551 mulgneg2 13567 limcimolemlt 15211 lgsneg1 15577 |
| Copyright terms: Public domain | W3C validator |