![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nninfisollemeq | GIF version |
Description: Lemma for nninfisol 7145. The case where 𝑁 is a successor and 𝑁 and 𝑋 are equal. (Contributed by Jim Kingdon, 13-Sep-2024.) |
Ref | Expression |
---|---|
nninfisol.x | ⊢ (𝜑 → 𝑋 ∈ ℕ∞) |
nninfisol.0 | ⊢ (𝜑 → (𝑋‘𝑁) = ∅) |
nninfisol.n | ⊢ (𝜑 → 𝑁 ∈ ω) |
nninfisollemeq.s | ⊢ (𝜑 → 𝑁 ≠ ∅) |
nninfisollemeq.0 | ⊢ (𝜑 → (𝑋‘∪ 𝑁) = 1o) |
Ref | Expression |
---|---|
nninfisollemeq | ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfisol.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℕ∞) | |
2 | nninfisol.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ω) | |
3 | nninfisollemeq.0 | . . . . 5 ⊢ (𝜑 → (𝑋‘∪ 𝑁) = 1o) | |
4 | nninfisol.0 | . . . . 5 ⊢ (𝜑 → (𝑋‘𝑁) = ∅) | |
5 | 1, 2, 3, 4 | nnnninfeq2 7141 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) |
6 | 5 | eqcomd 2193 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
7 | 6 | orcd 734 | . 2 ⊢ (𝜑 → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) |
8 | df-dc 836 | . 2 ⊢ (DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ↔ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) | |
9 | 7, 8 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 = wceq 1363 ∈ wcel 2158 ≠ wne 2357 ∅c0 3434 ifcif 3546 ∪ cuni 3821 ↦ cmpt 4076 ωcom 4601 ‘cfv 5228 1oc1o 6424 ℕ∞xnninf 7132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1o 6431 df-2o 6432 df-map 6664 df-nninf 7133 |
This theorem is referenced by: nninfisol 7145 |
Copyright terms: Public domain | W3C validator |