ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdslelemd GIF version

Theorem dvdslelemd 11790
Description: Lemma for dvdsle 11791. (Contributed by Jim Kingdon, 8-Nov-2021.)
Hypotheses
Ref Expression
dvdslelemd.1 (𝜑𝑀 ∈ ℤ)
dvdslelemd.2 (𝜑𝑁 ∈ ℕ)
dvdslelemd.3 (𝜑𝐾 ∈ ℤ)
dvdslelemd.lt (𝜑𝑁 < 𝑀)
Assertion
Ref Expression
dvdslelemd (𝜑 → (𝐾 · 𝑀) ≠ 𝑁)

Proof of Theorem dvdslelemd
StepHypRef Expression
1 dvdslelemd.3 . . . . 5 (𝜑𝐾 ∈ ℤ)
2 0z 9210 . . . . 5 0 ∈ ℤ
3 zlelttric 9244 . . . . 5 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐾 ≤ 0 ∨ 0 < 𝐾))
41, 2, 3sylancl 411 . . . 4 (𝜑 → (𝐾 ≤ 0 ∨ 0 < 𝐾))
5 zgt0ge1 9257 . . . . . 6 (𝐾 ∈ ℤ → (0 < 𝐾 ↔ 1 ≤ 𝐾))
61, 5syl 14 . . . . 5 (𝜑 → (0 < 𝐾 ↔ 1 ≤ 𝐾))
76orbi2d 785 . . . 4 (𝜑 → ((𝐾 ≤ 0 ∨ 0 < 𝐾) ↔ (𝐾 ≤ 0 ∨ 1 ≤ 𝐾)))
84, 7mpbid 146 . . 3 (𝜑 → (𝐾 ≤ 0 ∨ 1 ≤ 𝐾))
91zred 9321 . . . . . . . 8 (𝜑𝐾 ∈ ℝ)
109adantr 274 . . . . . . 7 ((𝜑𝐾 ≤ 0) → 𝐾 ∈ ℝ)
11 dvdslelemd.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1211zred 9321 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
1312adantr 274 . . . . . . 7 ((𝜑𝐾 ≤ 0) → 𝑀 ∈ ℝ)
1410, 13remulcld 7937 . . . . . 6 ((𝜑𝐾 ≤ 0) → (𝐾 · 𝑀) ∈ ℝ)
15 0red 7908 . . . . . 6 ((𝜑𝐾 ≤ 0) → 0 ∈ ℝ)
16 dvdslelemd.2 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1716nnred 8878 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
1817adantr 274 . . . . . 6 ((𝜑𝐾 ≤ 0) → 𝑁 ∈ ℝ)
1910renegcld 8286 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → -𝐾 ∈ ℝ)
209le0neg1d 8423 . . . . . . . . 9 (𝜑 → (𝐾 ≤ 0 ↔ 0 ≤ -𝐾))
2120biimpa 294 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → 0 ≤ -𝐾)
22 0red 7908 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
2316nngt0d 8909 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
24 dvdslelemd.lt . . . . . . . . . . 11 (𝜑𝑁 < 𝑀)
2522, 17, 12, 23, 24lttrd 8032 . . . . . . . . . 10 (𝜑 → 0 < 𝑀)
2622, 12, 25ltled 8025 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑀)
2726adantr 274 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → 0 ≤ 𝑀)
2819, 13, 21, 27mulge0d 8527 . . . . . . 7 ((𝜑𝐾 ≤ 0) → 0 ≤ (-𝐾 · 𝑀))
2914le0neg1d 8423 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀)))
3010recnd 7935 . . . . . . . . . 10 ((𝜑𝐾 ≤ 0) → 𝐾 ∈ ℂ)
3113recnd 7935 . . . . . . . . . 10 ((𝜑𝐾 ≤ 0) → 𝑀 ∈ ℂ)
3230, 31mulneg1d 8317 . . . . . . . . 9 ((𝜑𝐾 ≤ 0) → (-𝐾 · 𝑀) = -(𝐾 · 𝑀))
3332breq2d 3999 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → (0 ≤ (-𝐾 · 𝑀) ↔ 0 ≤ -(𝐾 · 𝑀)))
3429, 33bitr4d 190 . . . . . . 7 ((𝜑𝐾 ≤ 0) → ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ (-𝐾 · 𝑀)))
3528, 34mpbird 166 . . . . . 6 ((𝜑𝐾 ≤ 0) → (𝐾 · 𝑀) ≤ 0)
3623adantr 274 . . . . . 6 ((𝜑𝐾 ≤ 0) → 0 < 𝑁)
3714, 15, 18, 35, 36lelttrd 8031 . . . . 5 ((𝜑𝐾 ≤ 0) → (𝐾 · 𝑀) < 𝑁)
3837ex 114 . . . 4 (𝜑 → (𝐾 ≤ 0 → (𝐾 · 𝑀) < 𝑁))
3917adantr 274 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑁 ∈ ℝ)
4012adantr 274 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑀 ∈ ℝ)
419adantr 274 . . . . . . 7 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
4241, 40remulcld 7937 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → (𝐾 · 𝑀) ∈ ℝ)
4324adantr 274 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑁 < 𝑀)
4426adantr 274 . . . . . . 7 ((𝜑 ∧ 1 ≤ 𝐾) → 0 ≤ 𝑀)
45 simpr 109 . . . . . . 7 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ 𝐾)
4640, 41, 44, 45lemulge12d 8841 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4739, 40, 42, 43, 46ltletrd 8329 . . . . 5 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑁 < (𝐾 · 𝑀))
4847ex 114 . . . 4 (𝜑 → (1 ≤ 𝐾𝑁 < (𝐾 · 𝑀)))
4938, 48orim12d 781 . . 3 (𝜑 → ((𝐾 ≤ 0 ∨ 1 ≤ 𝐾) → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
508, 49mpd 13 . 2 (𝜑 → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
51 zq 9572 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℚ)
521, 51syl 14 . . . 4 (𝜑𝐾 ∈ ℚ)
53 zq 9572 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
5411, 53syl 14 . . . 4 (𝜑𝑀 ∈ ℚ)
55 qmulcl 9583 . . . 4 ((𝐾 ∈ ℚ ∧ 𝑀 ∈ ℚ) → (𝐾 · 𝑀) ∈ ℚ)
5652, 54, 55syl2anc 409 . . 3 (𝜑 → (𝐾 · 𝑀) ∈ ℚ)
57 nnq 9579 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
5816, 57syl 14 . . 3 (𝜑𝑁 ∈ ℚ)
59 qlttri2 9587 . . 3 (((𝐾 · 𝑀) ∈ ℚ ∧ 𝑁 ∈ ℚ) → ((𝐾 · 𝑀) ≠ 𝑁 ↔ ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
6056, 58, 59syl2anc 409 . 2 (𝜑 → ((𝐾 · 𝑀) ≠ 𝑁 ↔ ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
6150, 60mpbird 166 1 (𝜑 → (𝐾 · 𝑀) ≠ 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  wcel 2141  wne 2340   class class class wbr 3987  (class class class)co 5850  cr 7760  0cc0 7761  1c1 7762   · cmul 7766   < clt 7941  cle 7942  -cneg 8078  cn 8865  cz 9199  cq 9565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-n0 9123  df-z 9200  df-q 9566
This theorem is referenced by:  dvdsle  11791
  Copyright terms: Public domain W3C validator