ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdslelemd GIF version

Theorem dvdslelemd 11577
Description: Lemma for dvdsle 11578. (Contributed by Jim Kingdon, 8-Nov-2021.)
Hypotheses
Ref Expression
dvdslelemd.1 (𝜑𝑀 ∈ ℤ)
dvdslelemd.2 (𝜑𝑁 ∈ ℕ)
dvdslelemd.3 (𝜑𝐾 ∈ ℤ)
dvdslelemd.lt (𝜑𝑁 < 𝑀)
Assertion
Ref Expression
dvdslelemd (𝜑 → (𝐾 · 𝑀) ≠ 𝑁)

Proof of Theorem dvdslelemd
StepHypRef Expression
1 dvdslelemd.3 . . . . 5 (𝜑𝐾 ∈ ℤ)
2 0z 9089 . . . . 5 0 ∈ ℤ
3 zlelttric 9123 . . . . 5 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐾 ≤ 0 ∨ 0 < 𝐾))
41, 2, 3sylancl 410 . . . 4 (𝜑 → (𝐾 ≤ 0 ∨ 0 < 𝐾))
5 zgt0ge1 9136 . . . . . 6 (𝐾 ∈ ℤ → (0 < 𝐾 ↔ 1 ≤ 𝐾))
61, 5syl 14 . . . . 5 (𝜑 → (0 < 𝐾 ↔ 1 ≤ 𝐾))
76orbi2d 780 . . . 4 (𝜑 → ((𝐾 ≤ 0 ∨ 0 < 𝐾) ↔ (𝐾 ≤ 0 ∨ 1 ≤ 𝐾)))
84, 7mpbid 146 . . 3 (𝜑 → (𝐾 ≤ 0 ∨ 1 ≤ 𝐾))
91zred 9197 . . . . . . . 8 (𝜑𝐾 ∈ ℝ)
109adantr 274 . . . . . . 7 ((𝜑𝐾 ≤ 0) → 𝐾 ∈ ℝ)
11 dvdslelemd.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1211zred 9197 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
1312adantr 274 . . . . . . 7 ((𝜑𝐾 ≤ 0) → 𝑀 ∈ ℝ)
1410, 13remulcld 7820 . . . . . 6 ((𝜑𝐾 ≤ 0) → (𝐾 · 𝑀) ∈ ℝ)
15 0red 7791 . . . . . 6 ((𝜑𝐾 ≤ 0) → 0 ∈ ℝ)
16 dvdslelemd.2 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1716nnred 8757 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
1817adantr 274 . . . . . 6 ((𝜑𝐾 ≤ 0) → 𝑁 ∈ ℝ)
1910renegcld 8166 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → -𝐾 ∈ ℝ)
209le0neg1d 8303 . . . . . . . . 9 (𝜑 → (𝐾 ≤ 0 ↔ 0 ≤ -𝐾))
2120biimpa 294 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → 0 ≤ -𝐾)
22 0red 7791 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
2316nngt0d 8788 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
24 dvdslelemd.lt . . . . . . . . . . 11 (𝜑𝑁 < 𝑀)
2522, 17, 12, 23, 24lttrd 7912 . . . . . . . . . 10 (𝜑 → 0 < 𝑀)
2622, 12, 25ltled 7905 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑀)
2726adantr 274 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → 0 ≤ 𝑀)
2819, 13, 21, 27mulge0d 8407 . . . . . . 7 ((𝜑𝐾 ≤ 0) → 0 ≤ (-𝐾 · 𝑀))
2914le0neg1d 8303 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀)))
3010recnd 7818 . . . . . . . . . 10 ((𝜑𝐾 ≤ 0) → 𝐾 ∈ ℂ)
3113recnd 7818 . . . . . . . . . 10 ((𝜑𝐾 ≤ 0) → 𝑀 ∈ ℂ)
3230, 31mulneg1d 8197 . . . . . . . . 9 ((𝜑𝐾 ≤ 0) → (-𝐾 · 𝑀) = -(𝐾 · 𝑀))
3332breq2d 3949 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → (0 ≤ (-𝐾 · 𝑀) ↔ 0 ≤ -(𝐾 · 𝑀)))
3429, 33bitr4d 190 . . . . . . 7 ((𝜑𝐾 ≤ 0) → ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ (-𝐾 · 𝑀)))
3528, 34mpbird 166 . . . . . 6 ((𝜑𝐾 ≤ 0) → (𝐾 · 𝑀) ≤ 0)
3623adantr 274 . . . . . 6 ((𝜑𝐾 ≤ 0) → 0 < 𝑁)
3714, 15, 18, 35, 36lelttrd 7911 . . . . 5 ((𝜑𝐾 ≤ 0) → (𝐾 · 𝑀) < 𝑁)
3837ex 114 . . . 4 (𝜑 → (𝐾 ≤ 0 → (𝐾 · 𝑀) < 𝑁))
3917adantr 274 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑁 ∈ ℝ)
4012adantr 274 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑀 ∈ ℝ)
419adantr 274 . . . . . . 7 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
4241, 40remulcld 7820 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → (𝐾 · 𝑀) ∈ ℝ)
4324adantr 274 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑁 < 𝑀)
4426adantr 274 . . . . . . 7 ((𝜑 ∧ 1 ≤ 𝐾) → 0 ≤ 𝑀)
45 simpr 109 . . . . . . 7 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ 𝐾)
4640, 41, 44, 45lemulge12d 8720 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4739, 40, 42, 43, 46ltletrd 8209 . . . . 5 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑁 < (𝐾 · 𝑀))
4847ex 114 . . . 4 (𝜑 → (1 ≤ 𝐾𝑁 < (𝐾 · 𝑀)))
4938, 48orim12d 776 . . 3 (𝜑 → ((𝐾 ≤ 0 ∨ 1 ≤ 𝐾) → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
508, 49mpd 13 . 2 (𝜑 → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
51 zq 9445 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℚ)
521, 51syl 14 . . . 4 (𝜑𝐾 ∈ ℚ)
53 zq 9445 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
5411, 53syl 14 . . . 4 (𝜑𝑀 ∈ ℚ)
55 qmulcl 9456 . . . 4 ((𝐾 ∈ ℚ ∧ 𝑀 ∈ ℚ) → (𝐾 · 𝑀) ∈ ℚ)
5652, 54, 55syl2anc 409 . . 3 (𝜑 → (𝐾 · 𝑀) ∈ ℚ)
57 nnq 9452 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
5816, 57syl 14 . . 3 (𝜑𝑁 ∈ ℚ)
59 qlttri2 9460 . . 3 (((𝐾 · 𝑀) ∈ ℚ ∧ 𝑁 ∈ ℚ) → ((𝐾 · 𝑀) ≠ 𝑁 ↔ ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
6056, 58, 59syl2anc 409 . 2 (𝜑 → ((𝐾 · 𝑀) ≠ 𝑁 ↔ ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
6150, 60mpbird 166 1 (𝜑 → (𝐾 · 𝑀) ≠ 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wcel 1481  wne 2309   class class class wbr 3937  (class class class)co 5782  cr 7643  0cc0 7644  1c1 7645   · cmul 7649   < clt 7824  cle 7825  -cneg 7958  cn 8744  cz 9078  cq 9438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439
This theorem is referenced by:  dvdsle  11578
  Copyright terms: Public domain W3C validator