ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdslelemd GIF version

Theorem dvdslelemd 11876
Description: Lemma for dvdsle 11877. (Contributed by Jim Kingdon, 8-Nov-2021.)
Hypotheses
Ref Expression
dvdslelemd.1 (𝜑𝑀 ∈ ℤ)
dvdslelemd.2 (𝜑𝑁 ∈ ℕ)
dvdslelemd.3 (𝜑𝐾 ∈ ℤ)
dvdslelemd.lt (𝜑𝑁 < 𝑀)
Assertion
Ref Expression
dvdslelemd (𝜑 → (𝐾 · 𝑀) ≠ 𝑁)

Proof of Theorem dvdslelemd
StepHypRef Expression
1 dvdslelemd.3 . . . . 5 (𝜑𝐾 ∈ ℤ)
2 0z 9289 . . . . 5 0 ∈ ℤ
3 zlelttric 9323 . . . . 5 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐾 ≤ 0 ∨ 0 < 𝐾))
41, 2, 3sylancl 413 . . . 4 (𝜑 → (𝐾 ≤ 0 ∨ 0 < 𝐾))
5 zgt0ge1 9336 . . . . . 6 (𝐾 ∈ ℤ → (0 < 𝐾 ↔ 1 ≤ 𝐾))
61, 5syl 14 . . . . 5 (𝜑 → (0 < 𝐾 ↔ 1 ≤ 𝐾))
76orbi2d 791 . . . 4 (𝜑 → ((𝐾 ≤ 0 ∨ 0 < 𝐾) ↔ (𝐾 ≤ 0 ∨ 1 ≤ 𝐾)))
84, 7mpbid 147 . . 3 (𝜑 → (𝐾 ≤ 0 ∨ 1 ≤ 𝐾))
91zred 9400 . . . . . . . 8 (𝜑𝐾 ∈ ℝ)
109adantr 276 . . . . . . 7 ((𝜑𝐾 ≤ 0) → 𝐾 ∈ ℝ)
11 dvdslelemd.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1211zred 9400 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
1312adantr 276 . . . . . . 7 ((𝜑𝐾 ≤ 0) → 𝑀 ∈ ℝ)
1410, 13remulcld 8013 . . . . . 6 ((𝜑𝐾 ≤ 0) → (𝐾 · 𝑀) ∈ ℝ)
15 0red 7983 . . . . . 6 ((𝜑𝐾 ≤ 0) → 0 ∈ ℝ)
16 dvdslelemd.2 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1716nnred 8957 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
1817adantr 276 . . . . . 6 ((𝜑𝐾 ≤ 0) → 𝑁 ∈ ℝ)
1910renegcld 8362 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → -𝐾 ∈ ℝ)
209le0neg1d 8499 . . . . . . . . 9 (𝜑 → (𝐾 ≤ 0 ↔ 0 ≤ -𝐾))
2120biimpa 296 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → 0 ≤ -𝐾)
22 0red 7983 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
2316nngt0d 8988 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
24 dvdslelemd.lt . . . . . . . . . . 11 (𝜑𝑁 < 𝑀)
2522, 17, 12, 23, 24lttrd 8108 . . . . . . . . . 10 (𝜑 → 0 < 𝑀)
2622, 12, 25ltled 8101 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑀)
2726adantr 276 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → 0 ≤ 𝑀)
2819, 13, 21, 27mulge0d 8603 . . . . . . 7 ((𝜑𝐾 ≤ 0) → 0 ≤ (-𝐾 · 𝑀))
2914le0neg1d 8499 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀)))
3010recnd 8011 . . . . . . . . . 10 ((𝜑𝐾 ≤ 0) → 𝐾 ∈ ℂ)
3113recnd 8011 . . . . . . . . . 10 ((𝜑𝐾 ≤ 0) → 𝑀 ∈ ℂ)
3230, 31mulneg1d 8393 . . . . . . . . 9 ((𝜑𝐾 ≤ 0) → (-𝐾 · 𝑀) = -(𝐾 · 𝑀))
3332breq2d 4030 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → (0 ≤ (-𝐾 · 𝑀) ↔ 0 ≤ -(𝐾 · 𝑀)))
3429, 33bitr4d 191 . . . . . . 7 ((𝜑𝐾 ≤ 0) → ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ (-𝐾 · 𝑀)))
3528, 34mpbird 167 . . . . . 6 ((𝜑𝐾 ≤ 0) → (𝐾 · 𝑀) ≤ 0)
3623adantr 276 . . . . . 6 ((𝜑𝐾 ≤ 0) → 0 < 𝑁)
3714, 15, 18, 35, 36lelttrd 8107 . . . . 5 ((𝜑𝐾 ≤ 0) → (𝐾 · 𝑀) < 𝑁)
3837ex 115 . . . 4 (𝜑 → (𝐾 ≤ 0 → (𝐾 · 𝑀) < 𝑁))
3917adantr 276 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑁 ∈ ℝ)
4012adantr 276 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑀 ∈ ℝ)
419adantr 276 . . . . . . 7 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
4241, 40remulcld 8013 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → (𝐾 · 𝑀) ∈ ℝ)
4324adantr 276 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑁 < 𝑀)
4426adantr 276 . . . . . . 7 ((𝜑 ∧ 1 ≤ 𝐾) → 0 ≤ 𝑀)
45 simpr 110 . . . . . . 7 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ 𝐾)
4640, 41, 44, 45lemulge12d 8920 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4739, 40, 42, 43, 46ltletrd 8405 . . . . 5 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑁 < (𝐾 · 𝑀))
4847ex 115 . . . 4 (𝜑 → (1 ≤ 𝐾𝑁 < (𝐾 · 𝑀)))
4938, 48orim12d 787 . . 3 (𝜑 → ((𝐾 ≤ 0 ∨ 1 ≤ 𝐾) → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
508, 49mpd 13 . 2 (𝜑 → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
51 zq 9651 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℚ)
521, 51syl 14 . . . 4 (𝜑𝐾 ∈ ℚ)
53 zq 9651 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
5411, 53syl 14 . . . 4 (𝜑𝑀 ∈ ℚ)
55 qmulcl 9662 . . . 4 ((𝐾 ∈ ℚ ∧ 𝑀 ∈ ℚ) → (𝐾 · 𝑀) ∈ ℚ)
5652, 54, 55syl2anc 411 . . 3 (𝜑 → (𝐾 · 𝑀) ∈ ℚ)
57 nnq 9658 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
5816, 57syl 14 . . 3 (𝜑𝑁 ∈ ℚ)
59 qlttri2 9666 . . 3 (((𝐾 · 𝑀) ∈ ℚ ∧ 𝑁 ∈ ℚ) → ((𝐾 · 𝑀) ≠ 𝑁 ↔ ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
6056, 58, 59syl2anc 411 . 2 (𝜑 → ((𝐾 · 𝑀) ≠ 𝑁 ↔ ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
6150, 60mpbird 167 1 (𝜑 → (𝐾 · 𝑀) ≠ 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  wcel 2160  wne 2360   class class class wbr 4018  (class class class)co 5892  cr 7835  0cc0 7836  1c1 7837   · cmul 7841   < clt 8017  cle 8018  -cneg 8154  cn 8944  cz 9278  cq 9644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-mulrcl 7935  ax-addcom 7936  ax-mulcom 7937  ax-addass 7938  ax-mulass 7939  ax-distr 7940  ax-i2m1 7941  ax-0lt1 7942  ax-1rid 7943  ax-0id 7944  ax-rnegex 7945  ax-precex 7946  ax-cnre 7947  ax-pre-ltirr 7948  ax-pre-ltwlin 7949  ax-pre-lttrn 7950  ax-pre-apti 7951  ax-pre-ltadd 7952  ax-pre-mulgt0 7953  ax-pre-mulext 7954
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-po 4311  df-iso 4312  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-pnf 8019  df-mnf 8020  df-xr 8021  df-ltxr 8022  df-le 8023  df-sub 8155  df-neg 8156  df-reap 8557  df-ap 8564  df-div 8655  df-inn 8945  df-n0 9202  df-z 9279  df-q 9645
This theorem is referenced by:  dvdsle  11877
  Copyright terms: Public domain W3C validator