ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdslelemd GIF version

Theorem dvdslelemd 11832
Description: Lemma for dvdsle 11833. (Contributed by Jim Kingdon, 8-Nov-2021.)
Hypotheses
Ref Expression
dvdslelemd.1 (𝜑𝑀 ∈ ℤ)
dvdslelemd.2 (𝜑𝑁 ∈ ℕ)
dvdslelemd.3 (𝜑𝐾 ∈ ℤ)
dvdslelemd.lt (𝜑𝑁 < 𝑀)
Assertion
Ref Expression
dvdslelemd (𝜑 → (𝐾 · 𝑀) ≠ 𝑁)

Proof of Theorem dvdslelemd
StepHypRef Expression
1 dvdslelemd.3 . . . . 5 (𝜑𝐾 ∈ ℤ)
2 0z 9253 . . . . 5 0 ∈ ℤ
3 zlelttric 9287 . . . . 5 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐾 ≤ 0 ∨ 0 < 𝐾))
41, 2, 3sylancl 413 . . . 4 (𝜑 → (𝐾 ≤ 0 ∨ 0 < 𝐾))
5 zgt0ge1 9300 . . . . . 6 (𝐾 ∈ ℤ → (0 < 𝐾 ↔ 1 ≤ 𝐾))
61, 5syl 14 . . . . 5 (𝜑 → (0 < 𝐾 ↔ 1 ≤ 𝐾))
76orbi2d 790 . . . 4 (𝜑 → ((𝐾 ≤ 0 ∨ 0 < 𝐾) ↔ (𝐾 ≤ 0 ∨ 1 ≤ 𝐾)))
84, 7mpbid 147 . . 3 (𝜑 → (𝐾 ≤ 0 ∨ 1 ≤ 𝐾))
91zred 9364 . . . . . . . 8 (𝜑𝐾 ∈ ℝ)
109adantr 276 . . . . . . 7 ((𝜑𝐾 ≤ 0) → 𝐾 ∈ ℝ)
11 dvdslelemd.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1211zred 9364 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
1312adantr 276 . . . . . . 7 ((𝜑𝐾 ≤ 0) → 𝑀 ∈ ℝ)
1410, 13remulcld 7978 . . . . . 6 ((𝜑𝐾 ≤ 0) → (𝐾 · 𝑀) ∈ ℝ)
15 0red 7949 . . . . . 6 ((𝜑𝐾 ≤ 0) → 0 ∈ ℝ)
16 dvdslelemd.2 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
1716nnred 8921 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
1817adantr 276 . . . . . 6 ((𝜑𝐾 ≤ 0) → 𝑁 ∈ ℝ)
1910renegcld 8327 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → -𝐾 ∈ ℝ)
209le0neg1d 8464 . . . . . . . . 9 (𝜑 → (𝐾 ≤ 0 ↔ 0 ≤ -𝐾))
2120biimpa 296 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → 0 ≤ -𝐾)
22 0red 7949 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
2316nngt0d 8952 . . . . . . . . . . 11 (𝜑 → 0 < 𝑁)
24 dvdslelemd.lt . . . . . . . . . . 11 (𝜑𝑁 < 𝑀)
2522, 17, 12, 23, 24lttrd 8073 . . . . . . . . . 10 (𝜑 → 0 < 𝑀)
2622, 12, 25ltled 8066 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑀)
2726adantr 276 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → 0 ≤ 𝑀)
2819, 13, 21, 27mulge0d 8568 . . . . . . 7 ((𝜑𝐾 ≤ 0) → 0 ≤ (-𝐾 · 𝑀))
2914le0neg1d 8464 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ -(𝐾 · 𝑀)))
3010recnd 7976 . . . . . . . . . 10 ((𝜑𝐾 ≤ 0) → 𝐾 ∈ ℂ)
3113recnd 7976 . . . . . . . . . 10 ((𝜑𝐾 ≤ 0) → 𝑀 ∈ ℂ)
3230, 31mulneg1d 8358 . . . . . . . . 9 ((𝜑𝐾 ≤ 0) → (-𝐾 · 𝑀) = -(𝐾 · 𝑀))
3332breq2d 4012 . . . . . . . 8 ((𝜑𝐾 ≤ 0) → (0 ≤ (-𝐾 · 𝑀) ↔ 0 ≤ -(𝐾 · 𝑀)))
3429, 33bitr4d 191 . . . . . . 7 ((𝜑𝐾 ≤ 0) → ((𝐾 · 𝑀) ≤ 0 ↔ 0 ≤ (-𝐾 · 𝑀)))
3528, 34mpbird 167 . . . . . 6 ((𝜑𝐾 ≤ 0) → (𝐾 · 𝑀) ≤ 0)
3623adantr 276 . . . . . 6 ((𝜑𝐾 ≤ 0) → 0 < 𝑁)
3714, 15, 18, 35, 36lelttrd 8072 . . . . 5 ((𝜑𝐾 ≤ 0) → (𝐾 · 𝑀) < 𝑁)
3837ex 115 . . . 4 (𝜑 → (𝐾 ≤ 0 → (𝐾 · 𝑀) < 𝑁))
3917adantr 276 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑁 ∈ ℝ)
4012adantr 276 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑀 ∈ ℝ)
419adantr 276 . . . . . . 7 ((𝜑 ∧ 1 ≤ 𝐾) → 𝐾 ∈ ℝ)
4241, 40remulcld 7978 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → (𝐾 · 𝑀) ∈ ℝ)
4324adantr 276 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑁 < 𝑀)
4426adantr 276 . . . . . . 7 ((𝜑 ∧ 1 ≤ 𝐾) → 0 ≤ 𝑀)
45 simpr 110 . . . . . . 7 ((𝜑 ∧ 1 ≤ 𝐾) → 1 ≤ 𝐾)
4640, 41, 44, 45lemulge12d 8884 . . . . . 6 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑀 ≤ (𝐾 · 𝑀))
4739, 40, 42, 43, 46ltletrd 8370 . . . . 5 ((𝜑 ∧ 1 ≤ 𝐾) → 𝑁 < (𝐾 · 𝑀))
4847ex 115 . . . 4 (𝜑 → (1 ≤ 𝐾𝑁 < (𝐾 · 𝑀)))
4938, 48orim12d 786 . . 3 (𝜑 → ((𝐾 ≤ 0 ∨ 1 ≤ 𝐾) → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
508, 49mpd 13 . 2 (𝜑 → ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀)))
51 zq 9615 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℚ)
521, 51syl 14 . . . 4 (𝜑𝐾 ∈ ℚ)
53 zq 9615 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
5411, 53syl 14 . . . 4 (𝜑𝑀 ∈ ℚ)
55 qmulcl 9626 . . . 4 ((𝐾 ∈ ℚ ∧ 𝑀 ∈ ℚ) → (𝐾 · 𝑀) ∈ ℚ)
5652, 54, 55syl2anc 411 . . 3 (𝜑 → (𝐾 · 𝑀) ∈ ℚ)
57 nnq 9622 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
5816, 57syl 14 . . 3 (𝜑𝑁 ∈ ℚ)
59 qlttri2 9630 . . 3 (((𝐾 · 𝑀) ∈ ℚ ∧ 𝑁 ∈ ℚ) → ((𝐾 · 𝑀) ≠ 𝑁 ↔ ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
6056, 58, 59syl2anc 411 . 2 (𝜑 → ((𝐾 · 𝑀) ≠ 𝑁 ↔ ((𝐾 · 𝑀) < 𝑁𝑁 < (𝐾 · 𝑀))))
6150, 60mpbird 167 1 (𝜑 → (𝐾 · 𝑀) ≠ 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  wcel 2148  wne 2347   class class class wbr 4000  (class class class)co 5869  cr 7801  0cc0 7802  1c1 7803   · cmul 7807   < clt 7982  cle 7983  -cneg 8119  cn 8908  cz 9242  cq 9608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-q 9609
This theorem is referenced by:  dvdsle  11833
  Copyright terms: Public domain W3C validator