| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plusgndx | GIF version | ||
| Description: Index value of the df-plusg 13109 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| plusgndx | ⊢ (+g‘ndx) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plusg 13109 | . 2 ⊢ +g = Slot 2 | |
| 2 | 2nn 9260 | . 2 ⊢ 2 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 13041 | 1 ⊢ (+g‘ndx) = 2 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ‘cfv 5314 2c2 9149 ndxcnx 13015 +gcplusg 13096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fv 5322 df-ov 5997 df-inn 9099 df-2 9157 df-ndx 13021 df-slot 13022 df-plusg 13109 |
| This theorem is referenced by: plusgndxnn 13130 basendxltplusgndx 13132 basendxnplusgndx 13144 plusgndxnmulrndx 13152 rngstrg 13154 starvndxnplusgndx 13162 scandxnplusgndx 13174 vscandxnplusgndx 13179 lmodstrd 13183 ipndxnplusgndx 13192 tsetndxnplusgndx 13211 topgrpstrd 13215 plendxnplusgndx 13225 dsndxnplusgndx 13240 slotsdifunifndx 13251 |
| Copyright terms: Public domain | W3C validator |