ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgexggg GIF version

Theorem rdgexggg 6470
Description: The recursive definition generator produces a set on a set input. (Contributed by Jim Kingdon, 4-Jul-2019.)
Assertion
Ref Expression
rdgexggg ((𝐹 Fn V ∧ 𝐴𝑉𝐵𝑊) → (rec(𝐹, 𝐴)‘𝐵) ∈ V)

Proof of Theorem rdgexggg
Dummy variables 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6463 . . 3 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
2 rdgruledefgg 6468 . . . 4 ((𝐹 Fn V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑦) ∈ V))
32alrimiv 1898 . . 3 ((𝐹 Fn V ∧ 𝐴𝑉) → ∀𝑦(Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑦) ∈ V))
41, 3tfrex 6461 . 2 (((𝐹 Fn V ∧ 𝐴𝑉) ∧ 𝐵𝑊) → (rec(𝐹, 𝐴)‘𝐵) ∈ V)
543impa 1197 1 ((𝐹 Fn V ∧ 𝐴𝑉𝐵𝑊) → (rec(𝐹, 𝐴)‘𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981  wcel 2177  Vcvv 2773  cun 3165   ciun 3929  cmpt 4109  dom cdm 4679  Fun wfun 5270   Fn wfn 5271  cfv 5276  reccrdg 6462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-recs 6398  df-irdg 6463
This theorem is referenced by:  rdgexgg  6471  rdgisucinc  6478  omv  6548  oeiv  6549
  Copyright terms: Public domain W3C validator