![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rdgexggg | GIF version |
Description: The recursive definition generator produces a set on a set input. (Contributed by Jim Kingdon, 4-Jul-2019.) |
Ref | Expression |
---|---|
rdgexggg | ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (rec(𝐹, 𝐴)‘𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-irdg 6394 | . . 3 ⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) | |
2 | rdgruledefgg 6399 | . . . 4 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘𝑦) ∈ V)) | |
3 | 2 | alrimiv 1885 | . . 3 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉) → ∀𝑦(Fun (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘𝑦) ∈ V)) |
4 | 1, 3 | tfrex 6392 | . 2 ⊢ (((𝐹 Fn V ∧ 𝐴 ∈ 𝑉) ∧ 𝐵 ∈ 𝑊) → (rec(𝐹, 𝐴)‘𝐵) ∈ V) |
5 | 4 | 3impa 1196 | 1 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (rec(𝐹, 𝐴)‘𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2160 Vcvv 2752 ∪ cun 3142 ∪ ciun 3901 ↦ cmpt 4079 dom cdm 4644 Fun wfun 5229 Fn wfn 5230 ‘cfv 5235 reccrdg 6393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-iord 4384 df-on 4386 df-suc 4389 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-recs 6329 df-irdg 6394 |
This theorem is referenced by: rdgexgg 6402 rdgisucinc 6409 omv 6479 oeiv 6480 |
Copyright terms: Public domain | W3C validator |