ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qus2idrng GIF version

Theorem qus2idrng 14497
Description: The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 14499 analog). (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
qus2idrng.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
qus2idrng.i 𝐼 = (2Ideal‘𝑅)
Assertion
Ref Expression
qus2idrng ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng)

Proof of Theorem qus2idrng
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qus2idrng.u . . 3 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
21a1i 9 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
3 eqidd 2230 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
4 eqid 2229 . 2 (+g𝑅) = (+g𝑅)
5 eqid 2229 . 2 (.r𝑅) = (.r𝑅)
6 simp3 1023 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
7 eqid 2229 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2229 . . . 4 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
97, 8eqger 13769 . . 3 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
106, 9syl 14 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
11 rngabl 13906 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
12113ad2ant1 1042 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Abel)
13 ablnsg 13879 . . . . 5 (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
1412, 13syl 14 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
156, 14eleqtrrd 2309 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (NrmSGrp‘𝑅))
167, 8, 4eqgcpbl 13773 . . 3 (𝑆 ∈ (NrmSGrp‘𝑅) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g𝑅)𝑑)))
1715, 16syl 14 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g𝑅)𝑑)))
18 qus2idrng.i . . 3 𝐼 = (2Ideal‘𝑅)
197, 8, 18, 52idlcpblrng 14495 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
20 simp1 1021 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Rng)
212, 3, 4, 5, 10, 17, 19, 20qusrng 13929 1 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6007   Er wer 6685  Basecbs 13040  +gcplusg 13118  .rcmulr 13119   /s cqus 13341  SubGrpcsubg 13712  NrmSGrpcnsg 13713   ~QG cqg 13714  Abelcabl 13830  Rngcrng 13903  2Idealc2idl 14471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-tpos 6397  df-er 6688  df-ec 6690  df-qs 6694  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-ip 13136  df-0g 13299  df-iimas 13343  df-qus 13344  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-sbg 13546  df-subg 13715  df-nsg 13716  df-eqg 13717  df-cmn 13831  df-abl 13832  df-mgp 13892  df-rng 13904  df-oppr 14039  df-lssm 14325  df-sra 14407  df-rgmod 14408  df-lidl 14441  df-2idl 14472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator