ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qus2idrng GIF version

Theorem qus2idrng 14021
Description: The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 14023 analog). (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
qus2idrng.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
qus2idrng.i 𝐼 = (2Ideal‘𝑅)
Assertion
Ref Expression
qus2idrng ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng)

Proof of Theorem qus2idrng
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qus2idrng.u . . 3 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
21a1i 9 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
3 eqidd 2194 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
4 eqid 2193 . 2 (+g𝑅) = (+g𝑅)
5 eqid 2193 . 2 (.r𝑅) = (.r𝑅)
6 simp3 1001 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
7 eqid 2193 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2193 . . . 4 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
97, 8eqger 13294 . . 3 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
106, 9syl 14 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
11 rngabl 13431 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
12113ad2ant1 1020 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Abel)
13 ablnsg 13404 . . . . 5 (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
1412, 13syl 14 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
156, 14eleqtrrd 2273 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (NrmSGrp‘𝑅))
167, 8, 4eqgcpbl 13298 . . 3 (𝑆 ∈ (NrmSGrp‘𝑅) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g𝑅)𝑑)))
1715, 16syl 14 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g𝑅)𝑑)))
18 qus2idrng.i . . 3 𝐼 = (2Ideal‘𝑅)
197, 8, 18, 52idlcpblrng 14019 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
20 simp1 999 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Rng)
212, 3, 4, 5, 10, 17, 19, 20qusrng 13454 1 ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  (class class class)co 5918   Er wer 6584  Basecbs 12618  +gcplusg 12695  .rcmulr 12696   /s cqus 12883  SubGrpcsubg 13237  NrmSGrpcnsg 13238   ~QG cqg 13239  Abelcabl 13355  Rngcrng 13428  2Idealc2idl 13995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-er 6587  df-ec 6589  df-qs 6593  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-ip 12713  df-0g 12869  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-subg 13240  df-nsg 13241  df-eqg 13242  df-cmn 13356  df-abl 13357  df-mgp 13417  df-rng 13429  df-oppr 13564  df-lssm 13849  df-sra 13931  df-rgmod 13932  df-lidl 13965  df-2idl 13996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator