| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qus2idrng | GIF version | ||
| Description: The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 14476 analog). (Contributed by AV, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| qus2idrng.u | ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) |
| qus2idrng.i | ⊢ 𝐼 = (2Ideal‘𝑅) |
| Ref | Expression |
|---|---|
| qus2idrng | ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qus2idrng.u | . . 3 ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) | |
| 2 | 1 | a1i 9 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))) |
| 3 | eqidd 2230 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → (Base‘𝑅) = (Base‘𝑅)) | |
| 4 | eqid 2229 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 5 | eqid 2229 | . 2 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | simp3 1023 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) | |
| 7 | eqid 2229 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | eqid 2229 | . . . 4 ⊢ (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆) | |
| 9 | 7, 8 | eqger 13747 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
| 10 | 6, 9 | syl 14 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
| 11 | rngabl 13884 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 12 | 11 | 3ad2ant1 1042 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Abel) |
| 13 | ablnsg 13857 | . . . . 5 ⊢ (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) | |
| 14 | 12, 13 | syl 14 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) |
| 15 | 6, 14 | eleqtrrd 2309 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (NrmSGrp‘𝑅)) |
| 16 | 7, 8, 4 | eqgcpbl 13751 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝑅) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g‘𝑅)𝑑))) |
| 17 | 15, 16 | syl 14 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g‘𝑅)𝑑))) |
| 18 | qus2idrng.i | . . 3 ⊢ 𝐼 = (2Ideal‘𝑅) | |
| 19 | 7, 8, 18, 5 | 2idlcpblrng 14472 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
| 20 | simp1 1021 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Rng) | |
| 21 | 2, 3, 4, 5, 10, 17, 19, 20 | qusrng 13907 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5314 (class class class)co 5994 Er wer 6667 Basecbs 13018 +gcplusg 13096 .rcmulr 13097 /s cqus 13319 SubGrpcsubg 13690 NrmSGrpcnsg 13691 ~QG cqg 13692 Abelcabl 13808 Rngcrng 13881 2Idealc2idl 14448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-tpos 6381 df-er 6670 df-ec 6672 df-qs 6676 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 df-plusg 13109 df-mulr 13110 df-sca 13112 df-vsca 13113 df-ip 13114 df-0g 13277 df-iimas 13321 df-qus 13322 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 df-sbg 13524 df-subg 13693 df-nsg 13694 df-eqg 13695 df-cmn 13809 df-abl 13810 df-mgp 13870 df-rng 13882 df-oppr 14017 df-lssm 14302 df-sra 14384 df-rgmod 14385 df-lidl 14418 df-2idl 14449 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |