ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngressid GIF version

Theorem rngressid 13912
Description: A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 13099. (Contributed by Jim Kingdon, 5-May-2025.)
Hypothesis
Ref Expression
rngressid.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
rngressid (𝐺 ∈ Rng → (𝐺s 𝐵) ∈ Rng)

Proof of Theorem rngressid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2230 . . 3 (𝐺 ∈ Rng → (𝐺s 𝐵) = (𝐺s 𝐵))
2 rngressid.b . . . 4 𝐵 = (Base‘𝐺)
32a1i 9 . . 3 (𝐺 ∈ Rng → 𝐵 = (Base‘𝐺))
4 id 19 . . 3 (𝐺 ∈ Rng → 𝐺 ∈ Rng)
5 ssidd 3245 . . 3 (𝐺 ∈ Rng → 𝐵𝐵)
61, 3, 4, 5ressbas2d 13096 . 2 (𝐺 ∈ Rng → 𝐵 = (Base‘(𝐺s 𝐵)))
7 eqidd 2230 . . 3 (𝐺 ∈ Rng → (+g𝐺) = (+g𝐺))
8 basfn 13086 . . . . 5 Base Fn V
9 elex 2811 . . . . 5 (𝐺 ∈ Rng → 𝐺 ∈ V)
10 funfvex 5643 . . . . . 6 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1110funfni 5422 . . . . 5 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
128, 9, 11sylancr 414 . . . 4 (𝐺 ∈ Rng → (Base‘𝐺) ∈ V)
132, 12eqeltrid 2316 . . 3 (𝐺 ∈ Rng → 𝐵 ∈ V)
141, 7, 13, 9ressplusgd 13157 . 2 (𝐺 ∈ Rng → (+g𝐺) = (+g‘(𝐺s 𝐵)))
15 eqid 2229 . . . 4 (𝐺s 𝐵) = (𝐺s 𝐵)
16 eqid 2229 . . . 4 (.r𝐺) = (.r𝐺)
1715, 16ressmulrg 13173 . . 3 ((𝐵 ∈ V ∧ 𝐺 ∈ Rng) → (.r𝐺) = (.r‘(𝐺s 𝐵)))
1813, 17mpancom 422 . 2 (𝐺 ∈ Rng → (.r𝐺) = (.r‘(𝐺s 𝐵)))
19 rngabl 13893 . . 3 (𝐺 ∈ Rng → 𝐺 ∈ Abel)
202ablressid 13867 . . 3 (𝐺 ∈ Abel → (𝐺s 𝐵) ∈ Abel)
2119, 20syl 14 . 2 (𝐺 ∈ Rng → (𝐺s 𝐵) ∈ Abel)
222, 16rngcl 13902 . 2 ((𝐺 ∈ Rng ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐺)𝑦) ∈ 𝐵)
232, 16rngass 13897 . 2 ((𝐺 ∈ Rng ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(.r𝐺)𝑦)(.r𝐺)𝑧) = (𝑥(.r𝐺)(𝑦(.r𝐺)𝑧)))
24 eqid 2229 . . 3 (+g𝐺) = (+g𝐺)
252, 24, 16rngdi 13898 . 2 ((𝐺 ∈ Rng ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥(.r𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑥(.r𝐺)𝑦)(+g𝐺)(𝑥(.r𝐺)𝑧)))
262, 24, 16rngdir 13899 . 2 ((𝐺 ∈ Rng ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝐺)𝑦)(.r𝐺)𝑧) = ((𝑥(.r𝐺)𝑧)(+g𝐺)(𝑦(.r𝐺)𝑧)))
276, 14, 18, 21, 22, 23, 25, 26isrngd 13911 1 (𝐺 ∈ Rng → (𝐺s 𝐵) ∈ Rng)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799   Fn wfn 5312  cfv 5317  (class class class)co 6000  Basecbs 13027  s cress 13028  +gcplusg 13105  .rcmulr 13106  Abelcabl 13817  Rngcrng 13890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-cmn 13818  df-abl 13819  df-mgp 13879  df-rng 13891
This theorem is referenced by:  subrngid  14159
  Copyright terms: Public domain W3C validator