ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngressid GIF version

Theorem rngressid 13831
Description: A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 13018. (Contributed by Jim Kingdon, 5-May-2025.)
Hypothesis
Ref Expression
rngressid.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
rngressid (𝐺 ∈ Rng → (𝐺s 𝐵) ∈ Rng)

Proof of Theorem rngressid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2208 . . 3 (𝐺 ∈ Rng → (𝐺s 𝐵) = (𝐺s 𝐵))
2 rngressid.b . . . 4 𝐵 = (Base‘𝐺)
32a1i 9 . . 3 (𝐺 ∈ Rng → 𝐵 = (Base‘𝐺))
4 id 19 . . 3 (𝐺 ∈ Rng → 𝐺 ∈ Rng)
5 ssidd 3222 . . 3 (𝐺 ∈ Rng → 𝐵𝐵)
61, 3, 4, 5ressbas2d 13015 . 2 (𝐺 ∈ Rng → 𝐵 = (Base‘(𝐺s 𝐵)))
7 eqidd 2208 . . 3 (𝐺 ∈ Rng → (+g𝐺) = (+g𝐺))
8 basfn 13005 . . . . 5 Base Fn V
9 elex 2788 . . . . 5 (𝐺 ∈ Rng → 𝐺 ∈ V)
10 funfvex 5616 . . . . . 6 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1110funfni 5395 . . . . 5 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
128, 9, 11sylancr 414 . . . 4 (𝐺 ∈ Rng → (Base‘𝐺) ∈ V)
132, 12eqeltrid 2294 . . 3 (𝐺 ∈ Rng → 𝐵 ∈ V)
141, 7, 13, 9ressplusgd 13076 . 2 (𝐺 ∈ Rng → (+g𝐺) = (+g‘(𝐺s 𝐵)))
15 eqid 2207 . . . 4 (𝐺s 𝐵) = (𝐺s 𝐵)
16 eqid 2207 . . . 4 (.r𝐺) = (.r𝐺)
1715, 16ressmulrg 13092 . . 3 ((𝐵 ∈ V ∧ 𝐺 ∈ Rng) → (.r𝐺) = (.r‘(𝐺s 𝐵)))
1813, 17mpancom 422 . 2 (𝐺 ∈ Rng → (.r𝐺) = (.r‘(𝐺s 𝐵)))
19 rngabl 13812 . . 3 (𝐺 ∈ Rng → 𝐺 ∈ Abel)
202ablressid 13786 . . 3 (𝐺 ∈ Abel → (𝐺s 𝐵) ∈ Abel)
2119, 20syl 14 . 2 (𝐺 ∈ Rng → (𝐺s 𝐵) ∈ Abel)
222, 16rngcl 13821 . 2 ((𝐺 ∈ Rng ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐺)𝑦) ∈ 𝐵)
232, 16rngass 13816 . 2 ((𝐺 ∈ Rng ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(.r𝐺)𝑦)(.r𝐺)𝑧) = (𝑥(.r𝐺)(𝑦(.r𝐺)𝑧)))
24 eqid 2207 . . 3 (+g𝐺) = (+g𝐺)
252, 24, 16rngdi 13817 . 2 ((𝐺 ∈ Rng ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥(.r𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑥(.r𝐺)𝑦)(+g𝐺)(𝑥(.r𝐺)𝑧)))
262, 24, 16rngdir 13818 . 2 ((𝐺 ∈ Rng ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝐺)𝑦)(.r𝐺)𝑧) = ((𝑥(.r𝐺)𝑧)(+g𝐺)(𝑦(.r𝐺)𝑧)))
276, 14, 18, 21, 22, 23, 25, 26isrngd 13830 1 (𝐺 ∈ Rng → (𝐺s 𝐵) ∈ Rng)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  Vcvv 2776   Fn wfn 5285  cfv 5290  (class class class)co 5967  Basecbs 12947  s cress 12948  +gcplusg 13024  .rcmulr 13025  Abelcabl 13736  Rngcrng 13809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-cmn 13737  df-abl 13738  df-mgp 13798  df-rng 13810
This theorem is referenced by:  subrngid  14078
  Copyright terms: Public domain W3C validator