| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngressid | GIF version | ||
| Description: A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 12845. (Contributed by Jim Kingdon, 5-May-2025.) |
| Ref | Expression |
|---|---|
| rngressid.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| rngressid | ⊢ (𝐺 ∈ Rng → (𝐺 ↾s 𝐵) ∈ Rng) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2205 | . . 3 ⊢ (𝐺 ∈ Rng → (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵)) | |
| 2 | rngressid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝐺 ∈ Rng → 𝐵 = (Base‘𝐺)) |
| 4 | id 19 | . . 3 ⊢ (𝐺 ∈ Rng → 𝐺 ∈ Rng) | |
| 5 | ssidd 3213 | . . 3 ⊢ (𝐺 ∈ Rng → 𝐵 ⊆ 𝐵) | |
| 6 | 1, 3, 4, 5 | ressbas2d 12842 | . 2 ⊢ (𝐺 ∈ Rng → 𝐵 = (Base‘(𝐺 ↾s 𝐵))) |
| 7 | eqidd 2205 | . . 3 ⊢ (𝐺 ∈ Rng → (+g‘𝐺) = (+g‘𝐺)) | |
| 8 | basfn 12832 | . . . . 5 ⊢ Base Fn V | |
| 9 | elex 2782 | . . . . 5 ⊢ (𝐺 ∈ Rng → 𝐺 ∈ V) | |
| 10 | funfvex 5592 | . . . . . 6 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 11 | 10 | funfni 5375 | . . . . 5 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 12 | 8, 9, 11 | sylancr 414 | . . . 4 ⊢ (𝐺 ∈ Rng → (Base‘𝐺) ∈ V) |
| 13 | 2, 12 | eqeltrid 2291 | . . 3 ⊢ (𝐺 ∈ Rng → 𝐵 ∈ V) |
| 14 | 1, 7, 13, 9 | ressplusgd 12903 | . 2 ⊢ (𝐺 ∈ Rng → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐵))) |
| 15 | eqid 2204 | . . . 4 ⊢ (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵) | |
| 16 | eqid 2204 | . . . 4 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
| 17 | 15, 16 | ressmulrg 12919 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐺 ∈ Rng) → (.r‘𝐺) = (.r‘(𝐺 ↾s 𝐵))) |
| 18 | 13, 17 | mpancom 422 | . 2 ⊢ (𝐺 ∈ Rng → (.r‘𝐺) = (.r‘(𝐺 ↾s 𝐵))) |
| 19 | rngabl 13639 | . . 3 ⊢ (𝐺 ∈ Rng → 𝐺 ∈ Abel) | |
| 20 | 2 | ablressid 13613 | . . 3 ⊢ (𝐺 ∈ Abel → (𝐺 ↾s 𝐵) ∈ Abel) |
| 21 | 19, 20 | syl 14 | . 2 ⊢ (𝐺 ∈ Rng → (𝐺 ↾s 𝐵) ∈ Abel) |
| 22 | 2, 16 | rngcl 13648 | . 2 ⊢ ((𝐺 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐺)𝑦) ∈ 𝐵) |
| 23 | 2, 16 | rngass 13643 | . 2 ⊢ ((𝐺 ∈ Rng ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(.r‘𝐺)𝑦)(.r‘𝐺)𝑧) = (𝑥(.r‘𝐺)(𝑦(.r‘𝐺)𝑧))) |
| 24 | eqid 2204 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 25 | 2, 24, 16 | rngdi 13644 | . 2 ⊢ ((𝐺 ∈ Rng ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑥(.r‘𝐺)𝑦)(+g‘𝐺)(𝑥(.r‘𝐺)𝑧))) |
| 26 | 2, 24, 16 | rngdir 13645 | . 2 ⊢ ((𝐺 ∈ Rng ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝐺)𝑦)(.r‘𝐺)𝑧) = ((𝑥(.r‘𝐺)𝑧)(+g‘𝐺)(𝑦(.r‘𝐺)𝑧))) |
| 27 | 6, 14, 18, 21, 22, 23, 25, 26 | isrngd 13657 | 1 ⊢ (𝐺 ∈ Rng → (𝐺 ↾s 𝐵) ∈ Rng) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 Fn wfn 5265 ‘cfv 5270 (class class class)co 5943 Basecbs 12774 ↾s cress 12775 +gcplusg 12851 .rcmulr 12852 Abelcabl 13563 Rngcrng 13636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12777 df-slot 12778 df-base 12780 df-sets 12781 df-iress 12782 df-plusg 12864 df-mulr 12865 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 df-minusg 13278 df-cmn 13564 df-abl 13565 df-mgp 13625 df-rng 13637 |
| This theorem is referenced by: subrngid 13905 |
| Copyright terms: Public domain | W3C validator |