| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rngressid | GIF version | ||
| Description: A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 13018. (Contributed by Jim Kingdon, 5-May-2025.) |
| Ref | Expression |
|---|---|
| rngressid.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| rngressid | ⊢ (𝐺 ∈ Rng → (𝐺 ↾s 𝐵) ∈ Rng) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2208 | . . 3 ⊢ (𝐺 ∈ Rng → (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵)) | |
| 2 | rngressid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝐺 ∈ Rng → 𝐵 = (Base‘𝐺)) |
| 4 | id 19 | . . 3 ⊢ (𝐺 ∈ Rng → 𝐺 ∈ Rng) | |
| 5 | ssidd 3222 | . . 3 ⊢ (𝐺 ∈ Rng → 𝐵 ⊆ 𝐵) | |
| 6 | 1, 3, 4, 5 | ressbas2d 13015 | . 2 ⊢ (𝐺 ∈ Rng → 𝐵 = (Base‘(𝐺 ↾s 𝐵))) |
| 7 | eqidd 2208 | . . 3 ⊢ (𝐺 ∈ Rng → (+g‘𝐺) = (+g‘𝐺)) | |
| 8 | basfn 13005 | . . . . 5 ⊢ Base Fn V | |
| 9 | elex 2788 | . . . . 5 ⊢ (𝐺 ∈ Rng → 𝐺 ∈ V) | |
| 10 | funfvex 5616 | . . . . . 6 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 11 | 10 | funfni 5395 | . . . . 5 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 12 | 8, 9, 11 | sylancr 414 | . . . 4 ⊢ (𝐺 ∈ Rng → (Base‘𝐺) ∈ V) |
| 13 | 2, 12 | eqeltrid 2294 | . . 3 ⊢ (𝐺 ∈ Rng → 𝐵 ∈ V) |
| 14 | 1, 7, 13, 9 | ressplusgd 13076 | . 2 ⊢ (𝐺 ∈ Rng → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐵))) |
| 15 | eqid 2207 | . . . 4 ⊢ (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵) | |
| 16 | eqid 2207 | . . . 4 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
| 17 | 15, 16 | ressmulrg 13092 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐺 ∈ Rng) → (.r‘𝐺) = (.r‘(𝐺 ↾s 𝐵))) |
| 18 | 13, 17 | mpancom 422 | . 2 ⊢ (𝐺 ∈ Rng → (.r‘𝐺) = (.r‘(𝐺 ↾s 𝐵))) |
| 19 | rngabl 13812 | . . 3 ⊢ (𝐺 ∈ Rng → 𝐺 ∈ Abel) | |
| 20 | 2 | ablressid 13786 | . . 3 ⊢ (𝐺 ∈ Abel → (𝐺 ↾s 𝐵) ∈ Abel) |
| 21 | 19, 20 | syl 14 | . 2 ⊢ (𝐺 ∈ Rng → (𝐺 ↾s 𝐵) ∈ Abel) |
| 22 | 2, 16 | rngcl 13821 | . 2 ⊢ ((𝐺 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐺)𝑦) ∈ 𝐵) |
| 23 | 2, 16 | rngass 13816 | . 2 ⊢ ((𝐺 ∈ Rng ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(.r‘𝐺)𝑦)(.r‘𝐺)𝑧) = (𝑥(.r‘𝐺)(𝑦(.r‘𝐺)𝑧))) |
| 24 | eqid 2207 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 25 | 2, 24, 16 | rngdi 13817 | . 2 ⊢ ((𝐺 ∈ Rng ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑥(.r‘𝐺)𝑦)(+g‘𝐺)(𝑥(.r‘𝐺)𝑧))) |
| 26 | 2, 24, 16 | rngdir 13818 | . 2 ⊢ ((𝐺 ∈ Rng ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝐺)𝑦)(.r‘𝐺)𝑧) = ((𝑥(.r‘𝐺)𝑧)(+g‘𝐺)(𝑦(.r‘𝐺)𝑧))) |
| 27 | 6, 14, 18, 21, 22, 23, 25, 26 | isrngd 13830 | 1 ⊢ (𝐺 ∈ Rng → (𝐺 ↾s 𝐵) ∈ Rng) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 Vcvv 2776 Fn wfn 5285 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 ↾s cress 12948 +gcplusg 13024 .rcmulr 13025 Abelcabl 13736 Rngcrng 13809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-plusg 13037 df-mulr 13038 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-cmn 13737 df-abl 13738 df-mgp 13798 df-rng 13810 |
| This theorem is referenced by: subrngid 14078 |
| Copyright terms: Public domain | W3C validator |