ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngressid GIF version

Theorem rngressid 13586
Description: A non-unital ring restricted to its base set is a non-unital ring. It will usually be the original non-unital ring exactly, of course, but to show that needs additional conditions such as those in strressid 12774. (Contributed by Jim Kingdon, 5-May-2025.)
Hypothesis
Ref Expression
rngressid.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
rngressid (𝐺 ∈ Rng → (𝐺s 𝐵) ∈ Rng)

Proof of Theorem rngressid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2197 . . 3 (𝐺 ∈ Rng → (𝐺s 𝐵) = (𝐺s 𝐵))
2 rngressid.b . . . 4 𝐵 = (Base‘𝐺)
32a1i 9 . . 3 (𝐺 ∈ Rng → 𝐵 = (Base‘𝐺))
4 id 19 . . 3 (𝐺 ∈ Rng → 𝐺 ∈ Rng)
5 ssidd 3205 . . 3 (𝐺 ∈ Rng → 𝐵𝐵)
61, 3, 4, 5ressbas2d 12771 . 2 (𝐺 ∈ Rng → 𝐵 = (Base‘(𝐺s 𝐵)))
7 eqidd 2197 . . 3 (𝐺 ∈ Rng → (+g𝐺) = (+g𝐺))
8 basfn 12761 . . . . 5 Base Fn V
9 elex 2774 . . . . 5 (𝐺 ∈ Rng → 𝐺 ∈ V)
10 funfvex 5578 . . . . . 6 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1110funfni 5361 . . . . 5 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
128, 9, 11sylancr 414 . . . 4 (𝐺 ∈ Rng → (Base‘𝐺) ∈ V)
132, 12eqeltrid 2283 . . 3 (𝐺 ∈ Rng → 𝐵 ∈ V)
141, 7, 13, 9ressplusgd 12831 . 2 (𝐺 ∈ Rng → (+g𝐺) = (+g‘(𝐺s 𝐵)))
15 eqid 2196 . . . 4 (𝐺s 𝐵) = (𝐺s 𝐵)
16 eqid 2196 . . . 4 (.r𝐺) = (.r𝐺)
1715, 16ressmulrg 12847 . . 3 ((𝐵 ∈ V ∧ 𝐺 ∈ Rng) → (.r𝐺) = (.r‘(𝐺s 𝐵)))
1813, 17mpancom 422 . 2 (𝐺 ∈ Rng → (.r𝐺) = (.r‘(𝐺s 𝐵)))
19 rngabl 13567 . . 3 (𝐺 ∈ Rng → 𝐺 ∈ Abel)
202ablressid 13541 . . 3 (𝐺 ∈ Abel → (𝐺s 𝐵) ∈ Abel)
2119, 20syl 14 . 2 (𝐺 ∈ Rng → (𝐺s 𝐵) ∈ Abel)
222, 16rngcl 13576 . 2 ((𝐺 ∈ Rng ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐺)𝑦) ∈ 𝐵)
232, 16rngass 13571 . 2 ((𝐺 ∈ Rng ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(.r𝐺)𝑦)(.r𝐺)𝑧) = (𝑥(.r𝐺)(𝑦(.r𝐺)𝑧)))
24 eqid 2196 . . 3 (+g𝐺) = (+g𝐺)
252, 24, 16rngdi 13572 . 2 ((𝐺 ∈ Rng ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥(.r𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑥(.r𝐺)𝑦)(+g𝐺)(𝑥(.r𝐺)𝑧)))
262, 24, 16rngdir 13573 . 2 ((𝐺 ∈ Rng ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝐺)𝑦)(.r𝐺)𝑧) = ((𝑥(.r𝐺)𝑧)(+g𝐺)(𝑦(.r𝐺)𝑧)))
276, 14, 18, 21, 22, 23, 25, 26isrngd 13585 1 (𝐺 ∈ Rng → (𝐺s 𝐵) ∈ Rng)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763   Fn wfn 5254  cfv 5259  (class class class)co 5925  Basecbs 12703  s cress 12704  +gcplusg 12780  .rcmulr 12781  Abelcabl 13491  Rngcrng 13564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-cmn 13492  df-abl 13493  df-mgp 13553  df-rng 13565
This theorem is referenced by:  subrngid  13833
  Copyright terms: Public domain W3C validator