![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climle | GIF version |
Description: Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.) |
Ref | Expression |
---|---|
climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climle.5 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
climle.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climle.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
climle.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climle | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climadd.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climadd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climle.5 | . . . 4 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
4 | zex 9326 | . . . . . . . 8 ⊢ ℤ ∈ V | |
5 | uzssz 9612 | . . . . . . . 8 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
6 | 4, 5 | ssexi 4167 | . . . . . . 7 ⊢ (ℤ≥‘𝑀) ∈ V |
7 | 1, 6 | eqeltri 2266 | . . . . . 6 ⊢ 𝑍 ∈ V |
8 | 7 | mptex 5784 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) ∈ V |
9 | 8 | a1i 9 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) ∈ V) |
10 | climadd.4 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
11 | climle.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) | |
12 | 11 | recnd 8048 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
13 | climle.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
14 | 13 | recnd 8048 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
15 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
16 | 11, 13 | resubcld 8400 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ ℝ) |
17 | fveq2 5554 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐺‘𝑗) = (𝐺‘𝑘)) | |
18 | fveq2 5554 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
19 | 17, 18 | oveq12d 5936 | . . . . . 6 ⊢ (𝑗 = 𝑘 → ((𝐺‘𝑗) − (𝐹‘𝑗)) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
20 | eqid 2193 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) = (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) | |
21 | 19, 20 | fvmptg 5633 | . . . . 5 ⊢ ((𝑘 ∈ 𝑍 ∧ ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ ℝ) → ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
22 | 15, 16, 21 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
23 | 1, 2, 3, 9, 10, 12, 14, 22 | climsub 11471 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗))) ⇝ (𝐵 − 𝐴)) |
24 | 22, 16 | eqeltrd 2270 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘) ∈ ℝ) |
25 | climle.8 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) | |
26 | 11, 13 | subge0d 8554 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘)) ↔ (𝐹‘𝑘) ≤ (𝐺‘𝑘))) |
27 | 25, 26 | mpbird 167 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘))) |
28 | 27, 22 | breqtrrd 4057 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ ((𝑗 ∈ 𝑍 ↦ ((𝐺‘𝑗) − (𝐹‘𝑗)))‘𝑘)) |
29 | 1, 2, 23, 24, 28 | climge0 11468 | . 2 ⊢ (𝜑 → 0 ≤ (𝐵 − 𝐴)) |
30 | 1, 2, 3, 11 | climrecl 11467 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
31 | 1, 2, 10, 13 | climrecl 11467 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
32 | 30, 31 | subge0d 8554 | . 2 ⊢ (𝜑 → (0 ≤ (𝐵 − 𝐴) ↔ 𝐴 ≤ 𝐵)) |
33 | 29, 32 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 class class class wbr 4029 ↦ cmpt 4090 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 0cc0 7872 ≤ cle 8055 − cmin 8190 ℤcz 9317 ℤ≥cuz 9592 ⇝ cli 11421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-rp 9720 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 |
This theorem is referenced by: climlec2 11484 iserle 11485 iserabs 11618 cvgcmpub 11619 |
Copyright terms: Public domain | W3C validator |