| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtxval0 | GIF version | ||
| Description: Degenerated case 1 for vertices: The set of vertices of the empty set is the empty set. (Contributed by AV, 24-Sep-2020.) |
| Ref | Expression |
|---|---|
| vtxval0 | ⊢ (Vtx‘∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 4703 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | 1 | iffalsei 3580 | . 2 ⊢ if(∅ ∈ (V × V), (1st ‘∅), (Base‘∅)) = (Base‘∅) |
| 3 | 0ex 4171 | . . 3 ⊢ ∅ ∈ V | |
| 4 | vtxvalg 15615 | . . 3 ⊢ (∅ ∈ V → (Vtx‘∅) = if(∅ ∈ (V × V), (1st ‘∅), (Base‘∅))) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (Vtx‘∅) = if(∅ ∈ (V × V), (1st ‘∅), (Base‘∅)) |
| 6 | base0 12882 | . 2 ⊢ ∅ = (Base‘∅) | |
| 7 | 2, 5, 6 | 3eqtr4i 2236 | 1 ⊢ (Vtx‘∅) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∅c0 3460 ifcif 3571 × cxp 4673 ‘cfv 5271 1st c1st 6224 Basecbs 12832 Vtxcvtx 15611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fo 5277 df-fv 5279 df-1st 6226 df-inn 9037 df-ndx 12835 df-slot 12836 df-base 12838 df-vtx 15613 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |