| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsiedg | GIF version | ||
| Description: The (indexed) edges of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| Ref | Expression |
|---|---|
| setsvtx.i | ⊢ 𝐼 = (.ef‘ndx) |
| setsvtx.s | ⊢ (𝜑 → 𝐺 Struct 𝑋) |
| setsvtx.b | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) |
| setsvtx.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| setsiedg | ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsvtx.s | . . . . 5 ⊢ (𝜑 → 𝐺 Struct 𝑋) | |
| 2 | structex 13010 | . . . . 5 ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
| 4 | edgfndxnn 15774 | . . . . 5 ⊢ (.ef‘ndx) ∈ ℕ | |
| 5 | 4 | a1i 9 | . . . 4 ⊢ (𝜑 → (.ef‘ndx) ∈ ℕ) |
| 6 | setsvtx.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 7 | setsex 13030 | . . . 4 ⊢ ((𝐺 ∈ V ∧ (.ef‘ndx) ∈ ℕ ∧ 𝐸 ∈ 𝑊) → (𝐺 sSet 〈(.ef‘ndx), 𝐸〉) ∈ V) | |
| 8 | 3, 5, 6, 7 | syl3anc 1252 | . . 3 ⊢ (𝜑 → (𝐺 sSet 〈(.ef‘ndx), 𝐸〉) ∈ V) |
| 9 | 1, 5, 6 | setsn0fun 13035 | . . 3 ⊢ (𝜑 → Fun ((𝐺 sSet 〈(.ef‘ndx), 𝐸〉) ∖ {∅})) |
| 10 | setsvtx.b | . . . 4 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) | |
| 11 | 1, 5, 6, 10 | bassetsnn 13055 | . . 3 ⊢ (𝜑 → {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet 〈(.ef‘ndx), 𝐸〉)) |
| 12 | funiedgvalg 15803 | . . 3 ⊢ (((𝐺 sSet 〈(.ef‘ndx), 𝐸〉) ∈ V ∧ Fun ((𝐺 sSet 〈(.ef‘ndx), 𝐸〉) ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet 〈(.ef‘ndx), 𝐸〉)) → (iEdg‘(𝐺 sSet 〈(.ef‘ndx), 𝐸〉)) = (.ef‘(𝐺 sSet 〈(.ef‘ndx), 𝐸〉))) | |
| 13 | 8, 9, 11, 12 | syl3anc 1252 | . 2 ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈(.ef‘ndx), 𝐸〉)) = (.ef‘(𝐺 sSet 〈(.ef‘ndx), 𝐸〉))) |
| 14 | setsvtx.i | . . . . . 6 ⊢ 𝐼 = (.ef‘ndx) | |
| 15 | 14 | opeq1i 3839 | . . . . 5 ⊢ 〈𝐼, 𝐸〉 = 〈(.ef‘ndx), 𝐸〉 |
| 16 | 15 | oveq2i 5985 | . . . 4 ⊢ (𝐺 sSet 〈𝐼, 𝐸〉) = (𝐺 sSet 〈(.ef‘ndx), 𝐸〉) |
| 17 | 16 | fveq2i 5606 | . . 3 ⊢ (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (iEdg‘(𝐺 sSet 〈(.ef‘ndx), 𝐸〉)) |
| 18 | 17 | a1i 9 | . 2 ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (iEdg‘(𝐺 sSet 〈(.ef‘ndx), 𝐸〉))) |
| 19 | edgfid 15772 | . . . . 5 ⊢ .ef = Slot (.ef‘ndx) | |
| 20 | 19, 4 | ndxslid 13023 | . . . 4 ⊢ (.ef = Slot (.ef‘ndx) ∧ (.ef‘ndx) ∈ ℕ) |
| 21 | 20 | setsslid 13049 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐸 ∈ 𝑊) → 𝐸 = (.ef‘(𝐺 sSet 〈(.ef‘ndx), 𝐸〉))) |
| 22 | 3, 6, 21 | syl2anc 411 | . 2 ⊢ (𝜑 → 𝐸 = (.ef‘(𝐺 sSet 〈(.ef‘ndx), 𝐸〉))) |
| 23 | 13, 18, 22 | 3eqtr4d 2252 | 1 ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝐸) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∖ cdif 3174 ⊆ wss 3177 ∅c0 3471 {csn 3646 {cpr 3647 〈cop 3649 class class class wbr 4062 dom cdm 4696 Fun wfun 5288 ‘cfv 5294 (class class class)co 5974 ℕcn 9078 Struct cstr 12994 ndxcnx 12995 sSet csts 12996 Basecbs 12998 .efcedgf 15770 iEdgciedg 15779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-2nd 6257 df-1o 6532 df-2o 6533 df-en 6858 df-dom 6859 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-edgf 15771 df-iedg 15781 |
| This theorem is referenced by: usgrstrrepeen 15994 |
| Copyright terms: Public domain | W3C validator |