Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oe0suclim Structured version   Visualization version   GIF version

Theorem oe0suclim 43273
Description: Closed form expression of the value of ordinal exponentiation for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.6 of [Schloeder] p. 4. See oe0 8489, oesuc 8494, oe0m1 8488, and oelim 8501. (Contributed by RP, 18-Jan-2025.)
Assertion
Ref Expression
oe0suclim ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴o 𝐵) = 1o) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴o 𝐵) = ((𝐴o 𝐶) ·o 𝐴)) ∧ (Lim 𝐵 → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐
Allowed substitution hint:   𝐶(𝑐)

Proof of Theorem oe0suclim
StepHypRef Expression
1 oe0 8489 . 2 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2 oesuc 8494 . 2 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
3 oelim 8501 . . . . 5 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑐𝐵 (𝐴o 𝑐))
4 simpr 484 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ∅ ∈ 𝐴)
54iftrued 4499 . . . . 5 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅) = 𝑐𝐵 (𝐴o 𝑐))
63, 5eqtr4d 2768 . . . 4 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))
7 simpl 482 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → 𝐴 ∈ On)
8 0elon 6390 . . . . . . . 8 ∅ ∈ On
9 ontri1 6369 . . . . . . . . 9 ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ⊆ ∅ ↔ ¬ ∅ ∈ 𝐴))
10 ss0 4368 . . . . . . . . 9 (𝐴 ⊆ ∅ → 𝐴 = ∅)
119, 10biimtrrdi 254 . . . . . . . 8 ((𝐴 ∈ On ∧ ∅ ∈ On) → (¬ ∅ ∈ 𝐴𝐴 = ∅))
127, 8, 11sylancl 586 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (¬ ∅ ∈ 𝐴𝐴 = ∅))
13 oveq1 7397 . . . . . . . . 9 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
14 oe0m1 8488 . . . . . . . . . . . 12 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
1514biimpd 229 . . . . . . . . . . 11 (𝐵 ∈ On → (∅ ∈ 𝐵 → (∅ ↑o 𝐵) = ∅))
16 0ellim 6399 . . . . . . . . . . 11 (Lim 𝐵 → ∅ ∈ 𝐵)
1715, 16impel 505 . . . . . . . . . 10 ((𝐵 ∈ On ∧ Lim 𝐵) → (∅ ↑o 𝐵) = ∅)
1817adantl 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (∅ ↑o 𝐵) = ∅)
1913, 18sylan9eqr 2787 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ∅)
2019ex 412 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 = ∅ → (𝐴o 𝐵) = ∅))
2112, 20syld 47 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (¬ ∅ ∈ 𝐴 → (𝐴o 𝐵) = ∅))
2221imp 406 . . . . 5 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ¬ ∅ ∈ 𝐴) → (𝐴o 𝐵) = ∅)
23 simpr 484 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ¬ ∅ ∈ 𝐴) → ¬ ∅ ∈ 𝐴)
2423iffalsed 4502 . . . . 5 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ¬ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅) = ∅)
2522, 24eqtr4d 2768 . . . 4 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ¬ ∅ ∈ 𝐴) → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))
266, 25pm2.61dan 812 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))
2726anassrs 467 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))
281, 2, 27onov0suclim 43270 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴o 𝐵) = 1o) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴o 𝐵) = ((𝐴o 𝐶) ·o 𝐴)) ∧ (Lim 𝐵 → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917  c0 4299  ifcif 4491   ciun 4958  Oncon0 6335  Lim wlim 6336  suc csuc 6337  (class class class)co 7390  1oc1o 8430   ·o comu 8435  o coe 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-omul 8442  df-oexp 8443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator