Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oe0suclim Structured version   Visualization version   GIF version

Theorem oe0suclim 43259
Description: Closed form expression of the value of ordinal exponentiation for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.6 of [Schloeder] p. 4. See oe0 8463, oesuc 8468, oe0m1 8462, and oelim 8475. (Contributed by RP, 18-Jan-2025.)
Assertion
Ref Expression
oe0suclim ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴o 𝐵) = 1o) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴o 𝐵) = ((𝐴o 𝐶) ·o 𝐴)) ∧ (Lim 𝐵 → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐
Allowed substitution hint:   𝐶(𝑐)

Proof of Theorem oe0suclim
StepHypRef Expression
1 oe0 8463 . 2 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2 oesuc 8468 . 2 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
3 oelim 8475 . . . . 5 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑐𝐵 (𝐴o 𝑐))
4 simpr 484 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ∅ ∈ 𝐴)
54iftrued 4492 . . . . 5 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅) = 𝑐𝐵 (𝐴o 𝑐))
63, 5eqtr4d 2767 . . . 4 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))
7 simpl 482 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → 𝐴 ∈ On)
8 0elon 6375 . . . . . . . 8 ∅ ∈ On
9 ontri1 6354 . . . . . . . . 9 ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ⊆ ∅ ↔ ¬ ∅ ∈ 𝐴))
10 ss0 4361 . . . . . . . . 9 (𝐴 ⊆ ∅ → 𝐴 = ∅)
119, 10biimtrrdi 254 . . . . . . . 8 ((𝐴 ∈ On ∧ ∅ ∈ On) → (¬ ∅ ∈ 𝐴𝐴 = ∅))
127, 8, 11sylancl 586 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (¬ ∅ ∈ 𝐴𝐴 = ∅))
13 oveq1 7376 . . . . . . . . 9 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
14 oe0m1 8462 . . . . . . . . . . . 12 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
1514biimpd 229 . . . . . . . . . . 11 (𝐵 ∈ On → (∅ ∈ 𝐵 → (∅ ↑o 𝐵) = ∅))
16 0ellim 6384 . . . . . . . . . . 11 (Lim 𝐵 → ∅ ∈ 𝐵)
1715, 16impel 505 . . . . . . . . . 10 ((𝐵 ∈ On ∧ Lim 𝐵) → (∅ ↑o 𝐵) = ∅)
1817adantl 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (∅ ↑o 𝐵) = ∅)
1913, 18sylan9eqr 2786 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ∅)
2019ex 412 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 = ∅ → (𝐴o 𝐵) = ∅))
2112, 20syld 47 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (¬ ∅ ∈ 𝐴 → (𝐴o 𝐵) = ∅))
2221imp 406 . . . . 5 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ¬ ∅ ∈ 𝐴) → (𝐴o 𝐵) = ∅)
23 simpr 484 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ¬ ∅ ∈ 𝐴) → ¬ ∅ ∈ 𝐴)
2423iffalsed 4495 . . . . 5 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ¬ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅) = ∅)
2522, 24eqtr4d 2767 . . . 4 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ¬ ∅ ∈ 𝐴) → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))
266, 25pm2.61dan 812 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))
2726anassrs 467 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))
281, 2, 27onov0suclim 43256 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴o 𝐵) = 1o) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴o 𝐵) = ((𝐴o 𝐶) ·o 𝐴)) ∧ (Lim 𝐵 → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911  c0 4292  ifcif 4484   ciun 4951  Oncon0 6320  Lim wlim 6321  suc csuc 6322  (class class class)co 7369  1oc1o 8404   ·o comu 8409  o coe 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-omul 8416  df-oexp 8417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator