Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oe0suclim Structured version   Visualization version   GIF version

Theorem oe0suclim 43260
Description: Closed form expression of the value of ordinal exponentiation for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.6 of [Schloeder] p. 4. See oe0 8440, oesuc 8445, oe0m1 8439, and oelim 8452. (Contributed by RP, 18-Jan-2025.)
Assertion
Ref Expression
oe0suclim ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴o 𝐵) = 1o) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴o 𝐵) = ((𝐴o 𝐶) ·o 𝐴)) ∧ (Lim 𝐵 → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐
Allowed substitution hint:   𝐶(𝑐)

Proof of Theorem oe0suclim
StepHypRef Expression
1 oe0 8440 . 2 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2 oesuc 8445 . 2 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
3 oelim 8452 . . . . 5 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑐𝐵 (𝐴o 𝑐))
4 simpr 484 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ∅ ∈ 𝐴)
54iftrued 4484 . . . . 5 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅) = 𝑐𝐵 (𝐴o 𝑐))
63, 5eqtr4d 2767 . . . 4 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))
7 simpl 482 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → 𝐴 ∈ On)
8 0elon 6362 . . . . . . . 8 ∅ ∈ On
9 ontri1 6341 . . . . . . . . 9 ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ⊆ ∅ ↔ ¬ ∅ ∈ 𝐴))
10 ss0 4353 . . . . . . . . 9 (𝐴 ⊆ ∅ → 𝐴 = ∅)
119, 10biimtrrdi 254 . . . . . . . 8 ((𝐴 ∈ On ∧ ∅ ∈ On) → (¬ ∅ ∈ 𝐴𝐴 = ∅))
127, 8, 11sylancl 586 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (¬ ∅ ∈ 𝐴𝐴 = ∅))
13 oveq1 7356 . . . . . . . . 9 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
14 oe0m1 8439 . . . . . . . . . . . 12 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
1514biimpd 229 . . . . . . . . . . 11 (𝐵 ∈ On → (∅ ∈ 𝐵 → (∅ ↑o 𝐵) = ∅))
16 0ellim 6371 . . . . . . . . . . 11 (Lim 𝐵 → ∅ ∈ 𝐵)
1715, 16impel 505 . . . . . . . . . 10 ((𝐵 ∈ On ∧ Lim 𝐵) → (∅ ↑o 𝐵) = ∅)
1817adantl 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (∅ ↑o 𝐵) = ∅)
1913, 18sylan9eqr 2786 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = ∅)
2019ex 412 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 = ∅ → (𝐴o 𝐵) = ∅))
2112, 20syld 47 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (¬ ∅ ∈ 𝐴 → (𝐴o 𝐵) = ∅))
2221imp 406 . . . . 5 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ¬ ∅ ∈ 𝐴) → (𝐴o 𝐵) = ∅)
23 simpr 484 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ¬ ∅ ∈ 𝐴) → ¬ ∅ ∈ 𝐴)
2423iffalsed 4487 . . . . 5 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ¬ ∅ ∈ 𝐴) → if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅) = ∅)
2522, 24eqtr4d 2767 . . . 4 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ¬ ∅ ∈ 𝐴) → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))
266, 25pm2.61dan 812 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))
2726anassrs 467 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))
281, 2, 27onov0suclim 43257 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴o 𝐵) = 1o) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴o 𝐵) = ((𝐴o 𝐶) ·o 𝐴)) ∧ (Lim 𝐵 → (𝐴o 𝐵) = if(∅ ∈ 𝐴, 𝑐𝐵 (𝐴o 𝑐), ∅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  c0 4284  ifcif 4476   ciun 4941  Oncon0 6307  Lim wlim 6308  suc csuc 6309  (class class class)co 7349  1oc1o 8381   ·o comu 8386  o coe 8387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-omul 8393  df-oexp 8394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator