MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzfbas Structured version   Visualization version   GIF version

Theorem uzfbas 23792
Description: The set of upper sets of integers based at a point in a fixed upper integer set like is a filter base on , which corresponds to convergence of sequences on . (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
uzfbas.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzfbas (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))

Proof of Theorem uzfbas
StepHypRef Expression
1 uzfbas.1 . . 3 𝑍 = (ℤ𝑀)
21uzrest 23791 . 2 (𝑀 ∈ ℤ → (ran ℤt 𝑍) = (ℤ𝑍))
3 zfbas 23790 . . . . 5 ran ℤ ∈ (fBas‘ℤ)
4 0nelfb 23725 . . . . 5 (ran ℤ ∈ (fBas‘ℤ) → ¬ ∅ ∈ ran ℤ)
53, 4ax-mp 5 . . . 4 ¬ ∅ ∈ ran ℤ
6 imassrn 6045 . . . . . 6 (ℤ𝑍) ⊆ ran ℤ
72, 6eqsstrdi 3994 . . . . 5 (𝑀 ∈ ℤ → (ran ℤt 𝑍) ⊆ ran ℤ)
87sseld 3948 . . . 4 (𝑀 ∈ ℤ → (∅ ∈ (ran ℤt 𝑍) → ∅ ∈ ran ℤ))
95, 8mtoi 199 . . 3 (𝑀 ∈ ℤ → ¬ ∅ ∈ (ran ℤt 𝑍))
10 uzssz 12821 . . . . 5 (ℤ𝑀) ⊆ ℤ
111, 10eqsstri 3996 . . . 4 𝑍 ⊆ ℤ
12 trfbas2 23737 . . . 4 ((ran ℤ ∈ (fBas‘ℤ) ∧ 𝑍 ⊆ ℤ) → ((ran ℤt 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤt 𝑍)))
133, 11, 12mp2an 692 . . 3 ((ran ℤt 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤt 𝑍))
149, 13sylibr 234 . 2 (𝑀 ∈ ℤ → (ran ℤt 𝑍) ∈ (fBas‘𝑍))
152, 14eqeltrrd 2830 1 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wss 3917  c0 4299  ran crn 5642  cima 5644  cfv 6514  (class class class)co 7390  cz 12536  cuz 12800  t crest 17390  fBascfbas 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-i2m1 11143  ax-1ne0 11144  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-neg 11415  df-nn 12194  df-z 12537  df-uz 12801  df-rest 17392  df-fbas 21268
This theorem is referenced by:  lmflf  23899  caucfil  25190  cmetcaulem  25195
  Copyright terms: Public domain W3C validator