MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzfbas Structured version   Visualization version   GIF version

Theorem uzfbas 23927
Description: The set of upper sets of integers based at a point in a fixed upper integer set like is a filter base on , which corresponds to convergence of sequences on . (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
uzfbas.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzfbas (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))

Proof of Theorem uzfbas
StepHypRef Expression
1 uzfbas.1 . . 3 𝑍 = (ℤ𝑀)
21uzrest 23926 . 2 (𝑀 ∈ ℤ → (ran ℤt 𝑍) = (ℤ𝑍))
3 zfbas 23925 . . . . 5 ran ℤ ∈ (fBas‘ℤ)
4 0nelfb 23860 . . . . 5 (ran ℤ ∈ (fBas‘ℤ) → ¬ ∅ ∈ ran ℤ)
53, 4ax-mp 5 . . . 4 ¬ ∅ ∈ ran ℤ
6 imassrn 6100 . . . . . 6 (ℤ𝑍) ⊆ ran ℤ
72, 6eqsstrdi 4063 . . . . 5 (𝑀 ∈ ℤ → (ran ℤt 𝑍) ⊆ ran ℤ)
87sseld 4007 . . . 4 (𝑀 ∈ ℤ → (∅ ∈ (ran ℤt 𝑍) → ∅ ∈ ran ℤ))
95, 8mtoi 199 . . 3 (𝑀 ∈ ℤ → ¬ ∅ ∈ (ran ℤt 𝑍))
10 uzssz 12924 . . . . 5 (ℤ𝑀) ⊆ ℤ
111, 10eqsstri 4043 . . . 4 𝑍 ⊆ ℤ
12 trfbas2 23872 . . . 4 ((ran ℤ ∈ (fBas‘ℤ) ∧ 𝑍 ⊆ ℤ) → ((ran ℤt 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤt 𝑍)))
133, 11, 12mp2an 691 . . 3 ((ran ℤt 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤt 𝑍))
149, 13sylibr 234 . 2 (𝑀 ∈ ℤ → (ran ℤt 𝑍) ∈ (fBas‘𝑍))
152, 14eqeltrrd 2845 1 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2108  wss 3976  c0 4352  ran crn 5701  cima 5703  cfv 6573  (class class class)co 7448  cz 12639  cuz 12903  t crest 17480  fBascfbas 21375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-i2m1 11252  ax-1ne0 11253  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-neg 11523  df-nn 12294  df-z 12640  df-uz 12904  df-rest 17482  df-fbas 21384
This theorem is referenced by:  lmflf  24034  caucfil  25336  cmetcaulem  25341
  Copyright terms: Public domain W3C validator