MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzfbas Structured version   Visualization version   GIF version

Theorem uzfbas 23813
Description: The set of upper sets of integers based at a point in a fixed upper integer set like is a filter base on , which corresponds to convergence of sequences on . (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
uzfbas.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzfbas (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))

Proof of Theorem uzfbas
StepHypRef Expression
1 uzfbas.1 . . 3 𝑍 = (ℤ𝑀)
21uzrest 23812 . 2 (𝑀 ∈ ℤ → (ran ℤt 𝑍) = (ℤ𝑍))
3 zfbas 23811 . . . . 5 ran ℤ ∈ (fBas‘ℤ)
4 0nelfb 23746 . . . . 5 (ran ℤ ∈ (fBas‘ℤ) → ¬ ∅ ∈ ran ℤ)
53, 4ax-mp 5 . . . 4 ¬ ∅ ∈ ran ℤ
6 imassrn 6019 . . . . . 6 (ℤ𝑍) ⊆ ran ℤ
72, 6eqsstrdi 3974 . . . . 5 (𝑀 ∈ ℤ → (ran ℤt 𝑍) ⊆ ran ℤ)
87sseld 3928 . . . 4 (𝑀 ∈ ℤ → (∅ ∈ (ran ℤt 𝑍) → ∅ ∈ ran ℤ))
95, 8mtoi 199 . . 3 (𝑀 ∈ ℤ → ¬ ∅ ∈ (ran ℤt 𝑍))
10 uzssz 12753 . . . . 5 (ℤ𝑀) ⊆ ℤ
111, 10eqsstri 3976 . . . 4 𝑍 ⊆ ℤ
12 trfbas2 23758 . . . 4 ((ran ℤ ∈ (fBas‘ℤ) ∧ 𝑍 ⊆ ℤ) → ((ran ℤt 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤt 𝑍)))
133, 11, 12mp2an 692 . . 3 ((ran ℤt 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤt 𝑍))
149, 13sylibr 234 . 2 (𝑀 ∈ ℤ → (ran ℤt 𝑍) ∈ (fBas‘𝑍))
152, 14eqeltrrd 2832 1 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wcel 2111  wss 3897  c0 4280  ran crn 5615  cima 5617  cfv 6481  (class class class)co 7346  cz 12468  cuz 12732  t crest 17324  fBascfbas 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-i2m1 11074  ax-1ne0 11075  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-neg 11347  df-nn 12126  df-z 12469  df-uz 12733  df-rest 17326  df-fbas 21288
This theorem is referenced by:  lmflf  23920  caucfil  25210  cmetcaulem  25215
  Copyright terms: Public domain W3C validator