MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzfbas Structured version   Visualization version   GIF version

Theorem uzfbas 23836
Description: The set of upper sets of integers based at a point in a fixed upper integer set like is a filter base on , which corresponds to convergence of sequences on . (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
uzfbas.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzfbas (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))

Proof of Theorem uzfbas
StepHypRef Expression
1 uzfbas.1 . . 3 𝑍 = (ℤ𝑀)
21uzrest 23835 . 2 (𝑀 ∈ ℤ → (ran ℤt 𝑍) = (ℤ𝑍))
3 zfbas 23834 . . . . 5 ran ℤ ∈ (fBas‘ℤ)
4 0nelfb 23769 . . . . 5 (ran ℤ ∈ (fBas‘ℤ) → ¬ ∅ ∈ ran ℤ)
53, 4ax-mp 5 . . . 4 ¬ ∅ ∈ ran ℤ
6 imassrn 6058 . . . . . 6 (ℤ𝑍) ⊆ ran ℤ
72, 6eqsstrdi 4003 . . . . 5 (𝑀 ∈ ℤ → (ran ℤt 𝑍) ⊆ ran ℤ)
87sseld 3957 . . . 4 (𝑀 ∈ ℤ → (∅ ∈ (ran ℤt 𝑍) → ∅ ∈ ran ℤ))
95, 8mtoi 199 . . 3 (𝑀 ∈ ℤ → ¬ ∅ ∈ (ran ℤt 𝑍))
10 uzssz 12873 . . . . 5 (ℤ𝑀) ⊆ ℤ
111, 10eqsstri 4005 . . . 4 𝑍 ⊆ ℤ
12 trfbas2 23781 . . . 4 ((ran ℤ ∈ (fBas‘ℤ) ∧ 𝑍 ⊆ ℤ) → ((ran ℤt 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤt 𝑍)))
133, 11, 12mp2an 692 . . 3 ((ran ℤt 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤt 𝑍))
149, 13sylibr 234 . 2 (𝑀 ∈ ℤ → (ran ℤt 𝑍) ∈ (fBas‘𝑍))
152, 14eqeltrrd 2835 1 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2108  wss 3926  c0 4308  ran crn 5655  cima 5657  cfv 6531  (class class class)co 7405  cz 12588  cuz 12852  t crest 17434  fBascfbas 21303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-i2m1 11197  ax-1ne0 11198  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-neg 11469  df-nn 12241  df-z 12589  df-uz 12853  df-rest 17436  df-fbas 21312
This theorem is referenced by:  lmflf  23943  caucfil  25235  cmetcaulem  25240
  Copyright terms: Public domain W3C validator