| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzfbas | Structured version Visualization version GIF version | ||
| Description: The set of upper sets of integers based at a point in a fixed upper integer set like ℕ is a filter base on ℕ, which corresponds to convergence of sequences on ℕ. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| uzfbas.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| uzfbas | ⊢ (𝑀 ∈ ℤ → (ℤ≥ “ 𝑍) ∈ (fBas‘𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzfbas.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | 1 | uzrest 23817 | . 2 ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) = (ℤ≥ “ 𝑍)) |
| 3 | zfbas 23816 | . . . . 5 ⊢ ran ℤ≥ ∈ (fBas‘ℤ) | |
| 4 | 0nelfb 23751 | . . . . 5 ⊢ (ran ℤ≥ ∈ (fBas‘ℤ) → ¬ ∅ ∈ ran ℤ≥) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ¬ ∅ ∈ ran ℤ≥ |
| 6 | imassrn 6031 | . . . . . 6 ⊢ (ℤ≥ “ 𝑍) ⊆ ran ℤ≥ | |
| 7 | 2, 6 | eqsstrdi 3988 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) ⊆ ran ℤ≥) |
| 8 | 7 | sseld 3942 | . . . 4 ⊢ (𝑀 ∈ ℤ → (∅ ∈ (ran ℤ≥ ↾t 𝑍) → ∅ ∈ ran ℤ≥)) |
| 9 | 5, 8 | mtoi 199 | . . 3 ⊢ (𝑀 ∈ ℤ → ¬ ∅ ∈ (ran ℤ≥ ↾t 𝑍)) |
| 10 | uzssz 12790 | . . . . 5 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 11 | 1, 10 | eqsstri 3990 | . . . 4 ⊢ 𝑍 ⊆ ℤ |
| 12 | trfbas2 23763 | . . . 4 ⊢ ((ran ℤ≥ ∈ (fBas‘ℤ) ∧ 𝑍 ⊆ ℤ) → ((ran ℤ≥ ↾t 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤ≥ ↾t 𝑍))) | |
| 13 | 3, 11, 12 | mp2an 692 | . . 3 ⊢ ((ran ℤ≥ ↾t 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤ≥ ↾t 𝑍)) |
| 14 | 9, 13 | sylibr 234 | . 2 ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) ∈ (fBas‘𝑍)) |
| 15 | 2, 14 | eqeltrrd 2829 | 1 ⊢ (𝑀 ∈ ℤ → (ℤ≥ “ 𝑍) ∈ (fBas‘𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ∅c0 4292 ran crn 5632 “ cima 5634 ‘cfv 6499 (class class class)co 7369 ℤcz 12505 ℤ≥cuz 12769 ↾t crest 17359 fBascfbas 21284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-neg 11384 df-nn 12163 df-z 12506 df-uz 12770 df-rest 17361 df-fbas 21293 |
| This theorem is referenced by: lmflf 23925 caucfil 25216 cmetcaulem 25221 |
| Copyright terms: Public domain | W3C validator |