![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzfbas | Structured version Visualization version GIF version |
Description: The set of upper sets of integers based at a point in a fixed upper integer set like ℕ is a filter base on ℕ, which corresponds to convergence of sequences on ℕ. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
uzfbas.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
uzfbas | ⊢ (𝑀 ∈ ℤ → (ℤ≥ “ 𝑍) ∈ (fBas‘𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzfbas.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | uzrest 23845 | . 2 ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) = (ℤ≥ “ 𝑍)) |
3 | zfbas 23844 | . . . . 5 ⊢ ran ℤ≥ ∈ (fBas‘ℤ) | |
4 | 0nelfb 23779 | . . . . 5 ⊢ (ran ℤ≥ ∈ (fBas‘ℤ) → ¬ ∅ ∈ ran ℤ≥) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ¬ ∅ ∈ ran ℤ≥ |
6 | imassrn 6075 | . . . . . 6 ⊢ (ℤ≥ “ 𝑍) ⊆ ran ℤ≥ | |
7 | 2, 6 | eqsstrdi 4031 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) ⊆ ran ℤ≥) |
8 | 7 | sseld 3975 | . . . 4 ⊢ (𝑀 ∈ ℤ → (∅ ∈ (ran ℤ≥ ↾t 𝑍) → ∅ ∈ ran ℤ≥)) |
9 | 5, 8 | mtoi 198 | . . 3 ⊢ (𝑀 ∈ ℤ → ¬ ∅ ∈ (ran ℤ≥ ↾t 𝑍)) |
10 | uzssz 12876 | . . . . 5 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
11 | 1, 10 | eqsstri 4011 | . . . 4 ⊢ 𝑍 ⊆ ℤ |
12 | trfbas2 23791 | . . . 4 ⊢ ((ran ℤ≥ ∈ (fBas‘ℤ) ∧ 𝑍 ⊆ ℤ) → ((ran ℤ≥ ↾t 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤ≥ ↾t 𝑍))) | |
13 | 3, 11, 12 | mp2an 690 | . . 3 ⊢ ((ran ℤ≥ ↾t 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤ≥ ↾t 𝑍)) |
14 | 9, 13 | sylibr 233 | . 2 ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) ∈ (fBas‘𝑍)) |
15 | 2, 14 | eqeltrrd 2826 | 1 ⊢ (𝑀 ∈ ℤ → (ℤ≥ “ 𝑍) ∈ (fBas‘𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 ∅c0 4322 ran crn 5679 “ cima 5681 ‘cfv 6549 (class class class)co 7419 ℤcz 12591 ℤ≥cuz 12855 ↾t crest 17405 fBascfbas 21284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-i2m1 11208 ax-1ne0 11209 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-neg 11479 df-nn 12246 df-z 12592 df-uz 12856 df-rest 17407 df-fbas 21293 |
This theorem is referenced by: lmflf 23953 caucfil 25255 cmetcaulem 25260 |
Copyright terms: Public domain | W3C validator |