| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzfbas | Structured version Visualization version GIF version | ||
| Description: The set of upper sets of integers based at a point in a fixed upper integer set like ℕ is a filter base on ℕ, which corresponds to convergence of sequences on ℕ. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| uzfbas.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| uzfbas | ⊢ (𝑀 ∈ ℤ → (ℤ≥ “ 𝑍) ∈ (fBas‘𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzfbas.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | 1 | uzrest 23782 | . 2 ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) = (ℤ≥ “ 𝑍)) |
| 3 | zfbas 23781 | . . . . 5 ⊢ ran ℤ≥ ∈ (fBas‘ℤ) | |
| 4 | 0nelfb 23716 | . . . . 5 ⊢ (ran ℤ≥ ∈ (fBas‘ℤ) → ¬ ∅ ∈ ran ℤ≥) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ¬ ∅ ∈ ran ℤ≥ |
| 6 | imassrn 6022 | . . . . . 6 ⊢ (ℤ≥ “ 𝑍) ⊆ ran ℤ≥ | |
| 7 | 2, 6 | eqsstrdi 3980 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) ⊆ ran ℤ≥) |
| 8 | 7 | sseld 3934 | . . . 4 ⊢ (𝑀 ∈ ℤ → (∅ ∈ (ran ℤ≥ ↾t 𝑍) → ∅ ∈ ran ℤ≥)) |
| 9 | 5, 8 | mtoi 199 | . . 3 ⊢ (𝑀 ∈ ℤ → ¬ ∅ ∈ (ran ℤ≥ ↾t 𝑍)) |
| 10 | uzssz 12756 | . . . . 5 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 11 | 1, 10 | eqsstri 3982 | . . . 4 ⊢ 𝑍 ⊆ ℤ |
| 12 | trfbas2 23728 | . . . 4 ⊢ ((ran ℤ≥ ∈ (fBas‘ℤ) ∧ 𝑍 ⊆ ℤ) → ((ran ℤ≥ ↾t 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤ≥ ↾t 𝑍))) | |
| 13 | 3, 11, 12 | mp2an 692 | . . 3 ⊢ ((ran ℤ≥ ↾t 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤ≥ ↾t 𝑍)) |
| 14 | 9, 13 | sylibr 234 | . 2 ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) ∈ (fBas‘𝑍)) |
| 15 | 2, 14 | eqeltrrd 2829 | 1 ⊢ (𝑀 ∈ ℤ → (ℤ≥ “ 𝑍) ∈ (fBas‘𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ∅c0 4284 ran crn 5620 “ cima 5622 ‘cfv 6482 (class class class)co 7349 ℤcz 12471 ℤ≥cuz 12735 ↾t crest 17324 fBascfbas 21249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-i2m1 11077 ax-1ne0 11078 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-neg 11350 df-nn 12129 df-z 12472 df-uz 12736 df-rest 17326 df-fbas 21258 |
| This theorem is referenced by: lmflf 23890 caucfil 25181 cmetcaulem 25186 |
| Copyright terms: Public domain | W3C validator |