| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzfbas | Structured version Visualization version GIF version | ||
| Description: The set of upper sets of integers based at a point in a fixed upper integer set like ℕ is a filter base on ℕ, which corresponds to convergence of sequences on ℕ. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| uzfbas.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| uzfbas | ⊢ (𝑀 ∈ ℤ → (ℤ≥ “ 𝑍) ∈ (fBas‘𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzfbas.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | 1 | uzrest 23791 | . 2 ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) = (ℤ≥ “ 𝑍)) |
| 3 | zfbas 23790 | . . . . 5 ⊢ ran ℤ≥ ∈ (fBas‘ℤ) | |
| 4 | 0nelfb 23725 | . . . . 5 ⊢ (ran ℤ≥ ∈ (fBas‘ℤ) → ¬ ∅ ∈ ran ℤ≥) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ¬ ∅ ∈ ran ℤ≥ |
| 6 | imassrn 6045 | . . . . . 6 ⊢ (ℤ≥ “ 𝑍) ⊆ ran ℤ≥ | |
| 7 | 2, 6 | eqsstrdi 3994 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) ⊆ ran ℤ≥) |
| 8 | 7 | sseld 3948 | . . . 4 ⊢ (𝑀 ∈ ℤ → (∅ ∈ (ran ℤ≥ ↾t 𝑍) → ∅ ∈ ran ℤ≥)) |
| 9 | 5, 8 | mtoi 199 | . . 3 ⊢ (𝑀 ∈ ℤ → ¬ ∅ ∈ (ran ℤ≥ ↾t 𝑍)) |
| 10 | uzssz 12821 | . . . . 5 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 11 | 1, 10 | eqsstri 3996 | . . . 4 ⊢ 𝑍 ⊆ ℤ |
| 12 | trfbas2 23737 | . . . 4 ⊢ ((ran ℤ≥ ∈ (fBas‘ℤ) ∧ 𝑍 ⊆ ℤ) → ((ran ℤ≥ ↾t 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤ≥ ↾t 𝑍))) | |
| 13 | 3, 11, 12 | mp2an 692 | . . 3 ⊢ ((ran ℤ≥ ↾t 𝑍) ∈ (fBas‘𝑍) ↔ ¬ ∅ ∈ (ran ℤ≥ ↾t 𝑍)) |
| 14 | 9, 13 | sylibr 234 | . 2 ⊢ (𝑀 ∈ ℤ → (ran ℤ≥ ↾t 𝑍) ∈ (fBas‘𝑍)) |
| 15 | 2, 14 | eqeltrrd 2830 | 1 ⊢ (𝑀 ∈ ℤ → (ℤ≥ “ 𝑍) ∈ (fBas‘𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ∅c0 4299 ran crn 5642 “ cima 5644 ‘cfv 6514 (class class class)co 7390 ℤcz 12536 ℤ≥cuz 12800 ↾t crest 17390 fBascfbas 21259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-neg 11415 df-nn 12194 df-z 12537 df-uz 12801 df-rest 17392 df-fbas 21268 |
| This theorem is referenced by: lmflf 23899 caucfil 25190 cmetcaulem 25195 |
| Copyright terms: Public domain | W3C validator |