MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0subm Structured version   Visualization version   GIF version

Theorem 0subm 18694
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
Hypothesis
Ref Expression
0subm.z 0 = (0gβ€˜πΊ)
Assertion
Ref Expression
0subm (𝐺 ∈ Mnd β†’ { 0 } ∈ (SubMndβ€˜πΊ))

Proof of Theorem 0subm
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . 4 (Baseβ€˜πΊ) = (Baseβ€˜πΊ)
2 0subm.z . . . 4 0 = (0gβ€˜πΊ)
31, 2mndidcl 18636 . . 3 (𝐺 ∈ Mnd β†’ 0 ∈ (Baseβ€˜πΊ))
43snssd 4811 . 2 (𝐺 ∈ Mnd β†’ { 0 } βŠ† (Baseβ€˜πΊ))
52fvexi 6902 . . . 4 0 ∈ V
65snid 4663 . . 3 0 ∈ { 0 }
76a1i 11 . 2 (𝐺 ∈ Mnd β†’ 0 ∈ { 0 })
8 velsn 4643 . . . . 5 (π‘Ž ∈ { 0 } ↔ π‘Ž = 0 )
9 velsn 4643 . . . . 5 (𝑏 ∈ { 0 } ↔ 𝑏 = 0 )
108, 9anbi12i 627 . . . 4 ((π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 }) ↔ (π‘Ž = 0 ∧ 𝑏 = 0 ))
11 eqid 2732 . . . . . . . 8 (+gβ€˜πΊ) = (+gβ€˜πΊ)
121, 11, 2mndlid 18641 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 0 ∈ (Baseβ€˜πΊ)) β†’ ( 0 (+gβ€˜πΊ) 0 ) = 0 )
133, 12mpdan 685 . . . . . 6 (𝐺 ∈ Mnd β†’ ( 0 (+gβ€˜πΊ) 0 ) = 0 )
14 ovex 7438 . . . . . . 7 ( 0 (+gβ€˜πΊ) 0 ) ∈ V
1514elsn 4642 . . . . . 6 (( 0 (+gβ€˜πΊ) 0 ) ∈ { 0 } ↔ ( 0 (+gβ€˜πΊ) 0 ) = 0 )
1613, 15sylibr 233 . . . . 5 (𝐺 ∈ Mnd β†’ ( 0 (+gβ€˜πΊ) 0 ) ∈ { 0 })
17 oveq12 7414 . . . . . 6 ((π‘Ž = 0 ∧ 𝑏 = 0 ) β†’ (π‘Ž(+gβ€˜πΊ)𝑏) = ( 0 (+gβ€˜πΊ) 0 ))
1817eleq1d 2818 . . . . 5 ((π‘Ž = 0 ∧ 𝑏 = 0 ) β†’ ((π‘Ž(+gβ€˜πΊ)𝑏) ∈ { 0 } ↔ ( 0 (+gβ€˜πΊ) 0 ) ∈ { 0 }))
1916, 18syl5ibrcom 246 . . . 4 (𝐺 ∈ Mnd β†’ ((π‘Ž = 0 ∧ 𝑏 = 0 ) β†’ (π‘Ž(+gβ€˜πΊ)𝑏) ∈ { 0 }))
2010, 19biimtrid 241 . . 3 (𝐺 ∈ Mnd β†’ ((π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 }) β†’ (π‘Ž(+gβ€˜πΊ)𝑏) ∈ { 0 }))
2120ralrimivv 3198 . 2 (𝐺 ∈ Mnd β†’ βˆ€π‘Ž ∈ { 0 }βˆ€π‘ ∈ { 0 } (π‘Ž(+gβ€˜πΊ)𝑏) ∈ { 0 })
221, 2, 11issubm 18680 . 2 (𝐺 ∈ Mnd β†’ ({ 0 } ∈ (SubMndβ€˜πΊ) ↔ ({ 0 } βŠ† (Baseβ€˜πΊ) ∧ 0 ∈ { 0 } ∧ βˆ€π‘Ž ∈ { 0 }βˆ€π‘ ∈ { 0 } (π‘Ž(+gβ€˜πΊ)𝑏) ∈ { 0 })))
234, 7, 21, 22mpbir3and 1342 1 (𝐺 ∈ Mnd β†’ { 0 } ∈ (SubMndβ€˜πΊ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3947  {csn 4627  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  0gc0g 17381  Mndcmnd 18621  SubMndcsubmnd 18666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-riota 7361  df-ov 7408  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668
This theorem is referenced by:  idressubmefmnd  18775  0subg  19025  0subgALT  19430
  Copyright terms: Public domain W3C validator