![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0subm | Structured version Visualization version GIF version |
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.) |
Ref | Expression |
---|---|
0subm.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
0subm | ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 0subm.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | 1, 2 | mndidcl 18775 | . . 3 ⊢ (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺)) |
4 | 3 | snssd 4814 | . 2 ⊢ (𝐺 ∈ Mnd → { 0 } ⊆ (Base‘𝐺)) |
5 | 2 | fvexi 6921 | . . . 4 ⊢ 0 ∈ V |
6 | 5 | snid 4667 | . . 3 ⊢ 0 ∈ { 0 } |
7 | 6 | a1i 11 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ { 0 }) |
8 | velsn 4647 | . . . . 5 ⊢ (𝑎 ∈ { 0 } ↔ 𝑎 = 0 ) | |
9 | velsn 4647 | . . . . 5 ⊢ (𝑏 ∈ { 0 } ↔ 𝑏 = 0 ) | |
10 | 8, 9 | anbi12i 628 | . . . 4 ⊢ ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) ↔ (𝑎 = 0 ∧ 𝑏 = 0 )) |
11 | eqid 2735 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
12 | 1, 11, 2 | mndlid 18780 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
13 | 3, 12 | mpdan 687 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) = 0 ) |
14 | ovex 7464 | . . . . . . 7 ⊢ ( 0 (+g‘𝐺) 0 ) ∈ V | |
15 | 14 | elsn 4646 | . . . . . 6 ⊢ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) = 0 ) |
16 | 13, 15 | sylibr 234 | . . . . 5 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
17 | oveq12 7440 | . . . . . 6 ⊢ ((𝑎 = 0 ∧ 𝑏 = 0 ) → (𝑎(+g‘𝐺)𝑏) = ( 0 (+g‘𝐺) 0 )) | |
18 | 17 | eleq1d 2824 | . . . . 5 ⊢ ((𝑎 = 0 ∧ 𝑏 = 0 ) → ((𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
19 | 16, 18 | syl5ibrcom 247 | . . . 4 ⊢ (𝐺 ∈ Mnd → ((𝑎 = 0 ∧ 𝑏 = 0 ) → (𝑎(+g‘𝐺)𝑏) ∈ { 0 })) |
20 | 10, 19 | biimtrid 242 | . . 3 ⊢ (𝐺 ∈ Mnd → ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) → (𝑎(+g‘𝐺)𝑏) ∈ { 0 })) |
21 | 20 | ralrimivv 3198 | . 2 ⊢ (𝐺 ∈ Mnd → ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 }) |
22 | 1, 2, 11 | issubm 18829 | . 2 ⊢ (𝐺 ∈ Mnd → ({ 0 } ∈ (SubMnd‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ 0 ∈ { 0 } ∧ ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 }))) |
23 | 4, 7, 21, 22 | mpbir3and 1341 | 1 ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 {csn 4631 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 0gc0g 17486 Mndcmnd 18760 SubMndcsubmnd 18808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-riota 7388 df-ov 7434 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 |
This theorem is referenced by: idressubmefmnd 18924 0subg 19182 0subgALT 19601 |
Copyright terms: Public domain | W3C validator |