MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0subm Structured version   Visualization version   GIF version

Theorem 0subm 18691
Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
Hypothesis
Ref Expression
0subm.z 0 = (0g𝐺)
Assertion
Ref Expression
0subm (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))

Proof of Theorem 0subm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 0subm.z . . . 4 0 = (0g𝐺)
31, 2mndidcl 18623 . . 3 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
43snssd 4760 . 2 (𝐺 ∈ Mnd → { 0 } ⊆ (Base‘𝐺))
52fvexi 6836 . . . 4 0 ∈ V
65snid 4614 . . 3 0 ∈ { 0 }
76a1i 11 . 2 (𝐺 ∈ Mnd → 0 ∈ { 0 })
8 velsn 4593 . . . . 5 (𝑎 ∈ { 0 } ↔ 𝑎 = 0 )
9 velsn 4593 . . . . 5 (𝑏 ∈ { 0 } ↔ 𝑏 = 0 )
108, 9anbi12i 628 . . . 4 ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) ↔ (𝑎 = 0𝑏 = 0 ))
11 eqid 2729 . . . . . . . 8 (+g𝐺) = (+g𝐺)
121, 11, 2mndlid 18628 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
133, 12mpdan 687 . . . . . 6 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) = 0 )
14 ovex 7382 . . . . . . 7 ( 0 (+g𝐺) 0 ) ∈ V
1514elsn 4592 . . . . . 6 (( 0 (+g𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) = 0 )
1613, 15sylibr 234 . . . . 5 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) ∈ { 0 })
17 oveq12 7358 . . . . . 6 ((𝑎 = 0𝑏 = 0 ) → (𝑎(+g𝐺)𝑏) = ( 0 (+g𝐺) 0 ))
1817eleq1d 2813 . . . . 5 ((𝑎 = 0𝑏 = 0 ) → ((𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 }))
1916, 18syl5ibrcom 247 . . . 4 (𝐺 ∈ Mnd → ((𝑎 = 0𝑏 = 0 ) → (𝑎(+g𝐺)𝑏) ∈ { 0 }))
2010, 19biimtrid 242 . . 3 (𝐺 ∈ Mnd → ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) → (𝑎(+g𝐺)𝑏) ∈ { 0 }))
2120ralrimivv 3170 . 2 (𝐺 ∈ Mnd → ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 })
221, 2, 11issubm 18677 . 2 (𝐺 ∈ Mnd → ({ 0 } ∈ (SubMnd‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ 0 ∈ { 0 } ∧ ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 })))
234, 7, 21, 22mpbir3and 1343 1 (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903  {csn 4577  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Mndcmnd 18608  SubMndcsubmnd 18656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-riota 7306  df-ov 7352  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658
This theorem is referenced by:  idressubmefmnd  18772  0subg  19030  0subgALT  19447
  Copyright terms: Public domain W3C validator