| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0subm | Structured version Visualization version GIF version | ||
| Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| 0subm.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| 0subm | ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 0subm.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 1, 2 | mndidcl 18657 | . . 3 ⊢ (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺)) |
| 4 | 3 | snssd 4758 | . 2 ⊢ (𝐺 ∈ Mnd → { 0 } ⊆ (Base‘𝐺)) |
| 5 | 2 | fvexi 6836 | . . . 4 ⊢ 0 ∈ V |
| 6 | 5 | snid 4612 | . . 3 ⊢ 0 ∈ { 0 } |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ { 0 }) |
| 8 | velsn 4589 | . . . . 5 ⊢ (𝑎 ∈ { 0 } ↔ 𝑎 = 0 ) | |
| 9 | velsn 4589 | . . . . 5 ⊢ (𝑏 ∈ { 0 } ↔ 𝑏 = 0 ) | |
| 10 | 8, 9 | anbi12i 628 | . . . 4 ⊢ ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) ↔ (𝑎 = 0 ∧ 𝑏 = 0 )) |
| 11 | eqid 2731 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 12 | 1, 11, 2 | mndlid 18662 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 13 | 3, 12 | mpdan 687 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 14 | ovex 7379 | . . . . . . 7 ⊢ ( 0 (+g‘𝐺) 0 ) ∈ V | |
| 15 | 14 | elsn 4588 | . . . . . 6 ⊢ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 16 | 13, 15 | sylibr 234 | . . . . 5 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
| 17 | oveq12 7355 | . . . . . 6 ⊢ ((𝑎 = 0 ∧ 𝑏 = 0 ) → (𝑎(+g‘𝐺)𝑏) = ( 0 (+g‘𝐺) 0 )) | |
| 18 | 17 | eleq1d 2816 | . . . . 5 ⊢ ((𝑎 = 0 ∧ 𝑏 = 0 ) → ((𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
| 19 | 16, 18 | syl5ibrcom 247 | . . . 4 ⊢ (𝐺 ∈ Mnd → ((𝑎 = 0 ∧ 𝑏 = 0 ) → (𝑎(+g‘𝐺)𝑏) ∈ { 0 })) |
| 20 | 10, 19 | biimtrid 242 | . . 3 ⊢ (𝐺 ∈ Mnd → ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) → (𝑎(+g‘𝐺)𝑏) ∈ { 0 })) |
| 21 | 20 | ralrimivv 3173 | . 2 ⊢ (𝐺 ∈ Mnd → ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 }) |
| 22 | 1, 2, 11 | issubm 18711 | . 2 ⊢ (𝐺 ∈ Mnd → ({ 0 } ∈ (SubMnd‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ 0 ∈ { 0 } ∧ ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 }))) |
| 23 | 4, 7, 21, 22 | mpbir3and 1343 | 1 ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 {csn 4573 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Mndcmnd 18642 SubMndcsubmnd 18690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 |
| This theorem is referenced by: idressubmefmnd 18806 0subg 19064 0subgALT 19480 |
| Copyright terms: Public domain | W3C validator |