| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0subm | Structured version Visualization version GIF version | ||
| Description: The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| 0subm.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| 0subm | ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 0subm.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 1, 2 | mndidcl 18727 | . . 3 ⊢ (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺)) |
| 4 | 3 | snssd 4785 | . 2 ⊢ (𝐺 ∈ Mnd → { 0 } ⊆ (Base‘𝐺)) |
| 5 | 2 | fvexi 6890 | . . . 4 ⊢ 0 ∈ V |
| 6 | 5 | snid 4638 | . . 3 ⊢ 0 ∈ { 0 } |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ { 0 }) |
| 8 | velsn 4617 | . . . . 5 ⊢ (𝑎 ∈ { 0 } ↔ 𝑎 = 0 ) | |
| 9 | velsn 4617 | . . . . 5 ⊢ (𝑏 ∈ { 0 } ↔ 𝑏 = 0 ) | |
| 10 | 8, 9 | anbi12i 628 | . . . 4 ⊢ ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) ↔ (𝑎 = 0 ∧ 𝑏 = 0 )) |
| 11 | eqid 2735 | . . . . . . . 8 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 12 | 1, 11, 2 | mndlid 18732 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 13 | 3, 12 | mpdan 687 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 14 | ovex 7438 | . . . . . . 7 ⊢ ( 0 (+g‘𝐺) 0 ) ∈ V | |
| 15 | 14 | elsn 4616 | . . . . . 6 ⊢ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 16 | 13, 15 | sylibr 234 | . . . . 5 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
| 17 | oveq12 7414 | . . . . . 6 ⊢ ((𝑎 = 0 ∧ 𝑏 = 0 ) → (𝑎(+g‘𝐺)𝑏) = ( 0 (+g‘𝐺) 0 )) | |
| 18 | 17 | eleq1d 2819 | . . . . 5 ⊢ ((𝑎 = 0 ∧ 𝑏 = 0 ) → ((𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
| 19 | 16, 18 | syl5ibrcom 247 | . . . 4 ⊢ (𝐺 ∈ Mnd → ((𝑎 = 0 ∧ 𝑏 = 0 ) → (𝑎(+g‘𝐺)𝑏) ∈ { 0 })) |
| 20 | 10, 19 | biimtrid 242 | . . 3 ⊢ (𝐺 ∈ Mnd → ((𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 }) → (𝑎(+g‘𝐺)𝑏) ∈ { 0 })) |
| 21 | 20 | ralrimivv 3185 | . 2 ⊢ (𝐺 ∈ Mnd → ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 }) |
| 22 | 1, 2, 11 | issubm 18781 | . 2 ⊢ (𝐺 ∈ Mnd → ({ 0 } ∈ (SubMnd‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ 0 ∈ { 0 } ∧ ∀𝑎 ∈ { 0 }∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 }))) |
| 23 | 4, 7, 21, 22 | mpbir3and 1343 | 1 ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 {csn 4601 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Mndcmnd 18712 SubMndcsubmnd 18760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-riota 7362 df-ov 7408 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 |
| This theorem is referenced by: idressubmefmnd 18876 0subg 19134 0subgALT 19549 |
| Copyright terms: Public domain | W3C validator |