MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0subg Structured version   Visualization version   GIF version

Theorem 0subg 18306
Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.)
Hypothesis
Ref Expression
0subg.z 0 = (0g𝐺)
Assertion
Ref Expression
0subg (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))

Proof of Theorem 0subg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 0subg.z . . . 4 0 = (0g𝐺)
31, 2grpidcl 18133 . . 3 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
43snssd 4744 . 2 (𝐺 ∈ Grp → { 0 } ⊆ (Base‘𝐺))
52fvexi 6686 . . . 4 0 ∈ V
65snnz 4713 . . 3 { 0 } ≠ ∅
76a1i 11 . 2 (𝐺 ∈ Grp → { 0 } ≠ ∅)
8 eqid 2823 . . . . . 6 (+g𝐺) = (+g𝐺)
91, 8, 2grplid 18135 . . . . 5 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
103, 9mpdan 685 . . . 4 (𝐺 ∈ Grp → ( 0 (+g𝐺) 0 ) = 0 )
11 ovex 7191 . . . . 5 ( 0 (+g𝐺) 0 ) ∈ V
1211elsn 4584 . . . 4 (( 0 (+g𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) = 0 )
1310, 12sylibr 236 . . 3 (𝐺 ∈ Grp → ( 0 (+g𝐺) 0 ) ∈ { 0 })
14 eqid 2823 . . . . 5 (invg𝐺) = (invg𝐺)
152, 14grpinvid 18162 . . . 4 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
16 fvex 6685 . . . . 5 ((invg𝐺)‘ 0 ) ∈ V
1716elsn 4584 . . . 4 (((invg𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg𝐺)‘ 0 ) = 0 )
1815, 17sylibr 236 . . 3 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) ∈ { 0 })
19 oveq1 7165 . . . . . . . 8 (𝑎 = 0 → (𝑎(+g𝐺)𝑏) = ( 0 (+g𝐺)𝑏))
2019eleq1d 2899 . . . . . . 7 (𝑎 = 0 → ((𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺)𝑏) ∈ { 0 }))
2120ralbidv 3199 . . . . . 6 (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ∀𝑏 ∈ { 0 } ( 0 (+g𝐺)𝑏) ∈ { 0 }))
22 oveq2 7166 . . . . . . . 8 (𝑏 = 0 → ( 0 (+g𝐺)𝑏) = ( 0 (+g𝐺) 0 ))
2322eleq1d 2899 . . . . . . 7 (𝑏 = 0 → (( 0 (+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 }))
245, 23ralsn 4621 . . . . . 6 (∀𝑏 ∈ { 0 } ( 0 (+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 })
2521, 24syl6bb 289 . . . . 5 (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 }))
26 fveq2 6672 . . . . . 6 (𝑎 = 0 → ((invg𝐺)‘𝑎) = ((invg𝐺)‘ 0 ))
2726eleq1d 2899 . . . . 5 (𝑎 = 0 → (((invg𝐺)‘𝑎) ∈ { 0 } ↔ ((invg𝐺)‘ 0 ) ∈ { 0 }))
2825, 27anbi12d 632 . . . 4 (𝑎 = 0 → ((∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g𝐺) 0 ) ∈ { 0 } ∧ ((invg𝐺)‘ 0 ) ∈ { 0 })))
295, 28ralsn 4621 . . 3 (∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g𝐺) 0 ) ∈ { 0 } ∧ ((invg𝐺)‘ 0 ) ∈ { 0 }))
3013, 18, 29sylanbrc 585 . 2 (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }))
311, 8, 14issubg2 18296 . 2 (𝐺 ∈ Grp → ({ 0 } ∈ (SubGrp‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ { 0 } ≠ ∅ ∧ ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }))))
324, 7, 30, 31mpbir3and 1338 1 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wss 3938  c0 4293  {csn 4569  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Grpcgrp 18105  invgcminusg 18106  SubGrpcsubg 18275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-subg 18278
This theorem is referenced by:  0nsg  18323  idressubgsymg  18540  pgp0  18723  slwn0  18742  lsm01  18799  lsm02  18800  dprdz  19154  dprdsn  19160  pgpfac1lem5  19203  tgptsmscls  22760  evpmsubg  30791
  Copyright terms: Public domain W3C validator