Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0subg | Structured version Visualization version GIF version |
Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) |
Ref | Expression |
---|---|
0subg.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
0subg | ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 0subg.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | 1, 2 | grpidcl 18607 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
4 | 3 | snssd 4742 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ⊆ (Base‘𝐺)) |
5 | 2 | fvexi 6788 | . . . 4 ⊢ 0 ∈ V |
6 | 5 | snnz 4712 | . . 3 ⊢ { 0 } ≠ ∅ |
7 | 6 | a1i 11 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ≠ ∅) |
8 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
9 | 1, 8, 2 | grplid 18609 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
10 | 3, 9 | mpdan 684 | . . . 4 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) = 0 ) |
11 | ovex 7308 | . . . . 5 ⊢ ( 0 (+g‘𝐺) 0 ) ∈ V | |
12 | 11 | elsn 4576 | . . . 4 ⊢ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) = 0 ) |
13 | 10, 12 | sylibr 233 | . . 3 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
14 | eqid 2738 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
15 | 2, 14 | grpinvid 18636 | . . . 4 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
16 | fvex 6787 | . . . . 5 ⊢ ((invg‘𝐺)‘ 0 ) ∈ V | |
17 | 16 | elsn 4576 | . . . 4 ⊢ (((invg‘𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) = 0 ) |
18 | 15, 17 | sylibr 233 | . . 3 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) ∈ { 0 }) |
19 | oveq1 7282 | . . . . . . . 8 ⊢ (𝑎 = 0 → (𝑎(+g‘𝐺)𝑏) = ( 0 (+g‘𝐺)𝑏)) | |
20 | 19 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑎 = 0 → ((𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺)𝑏) ∈ { 0 })) |
21 | 20 | ralbidv 3112 | . . . . . 6 ⊢ (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ∀𝑏 ∈ { 0 } ( 0 (+g‘𝐺)𝑏) ∈ { 0 })) |
22 | oveq2 7283 | . . . . . . . 8 ⊢ (𝑏 = 0 → ( 0 (+g‘𝐺)𝑏) = ( 0 (+g‘𝐺) 0 )) | |
23 | 22 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑏 = 0 → (( 0 (+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
24 | 5, 23 | ralsn 4617 | . . . . . 6 ⊢ (∀𝑏 ∈ { 0 } ( 0 (+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
25 | 21, 24 | bitrdi 287 | . . . . 5 ⊢ (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
26 | fveq2 6774 | . . . . . 6 ⊢ (𝑎 = 0 → ((invg‘𝐺)‘𝑎) = ((invg‘𝐺)‘ 0 )) | |
27 | 26 | eleq1d 2823 | . . . . 5 ⊢ (𝑎 = 0 → (((invg‘𝐺)‘𝑎) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
28 | 25, 27 | anbi12d 631 | . . . 4 ⊢ (𝑎 = 0 → ((∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ∧ ((invg‘𝐺)‘ 0 ) ∈ { 0 }))) |
29 | 5, 28 | ralsn 4617 | . . 3 ⊢ (∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ∧ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
30 | 13, 18, 29 | sylanbrc 583 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 })) |
31 | 1, 8, 14 | issubg2 18770 | . 2 ⊢ (𝐺 ∈ Grp → ({ 0 } ∈ (SubGrp‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ { 0 } ≠ ∅ ∧ ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 })))) |
32 | 4, 7, 30, 31 | mpbir3and 1341 | 1 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ⊆ wss 3887 ∅c0 4256 {csn 4561 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Grpcgrp 18577 invgcminusg 18578 SubGrpcsubg 18749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-subg 18752 |
This theorem is referenced by: 0nsg 18797 idressubgsymg 19018 pgp0 19201 slwn0 19220 lsm01 19277 lsm02 19278 dprdz 19633 dprdsn 19639 pgpfac1lem5 19682 tgptsmscls 23301 evpmsubg 31414 |
Copyright terms: Public domain | W3C validator |