![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0subg | Structured version Visualization version GIF version |
Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.) |
Ref | Expression |
---|---|
0subg.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
0subg | ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18823 | . . 3 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | 0subg.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | 2 | 0subm 18695 | . . 3 ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubMnd‘𝐺)) |
5 | eqid 2733 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | 2, 5 | grpinvid 18881 | . . . 4 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
7 | fvex 6902 | . . . . 5 ⊢ ((invg‘𝐺)‘ 0 ) ∈ V | |
8 | 7 | elsn 4643 | . . . 4 ⊢ (((invg‘𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) = 0 ) |
9 | 6, 8 | sylibr 233 | . . 3 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) ∈ { 0 }) |
10 | 2 | fvexi 6903 | . . . 4 ⊢ 0 ∈ V |
11 | fveq2 6889 | . . . . 5 ⊢ (𝑎 = 0 → ((invg‘𝐺)‘𝑎) = ((invg‘𝐺)‘ 0 )) | |
12 | 11 | eleq1d 2819 | . . . 4 ⊢ (𝑎 = 0 → (((invg‘𝐺)‘𝑎) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
13 | 10, 12 | ralsn 4685 | . . 3 ⊢ (∀𝑎 ∈ { 0 } ((invg‘𝐺)‘𝑎) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) ∈ { 0 }) |
14 | 9, 13 | sylibr 233 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } ((invg‘𝐺)‘𝑎) ∈ { 0 }) |
15 | 5 | issubg3 19019 | . 2 ⊢ (𝐺 ∈ Grp → ({ 0 } ∈ (SubGrp‘𝐺) ↔ ({ 0 } ∈ (SubMnd‘𝐺) ∧ ∀𝑎 ∈ { 0 } ((invg‘𝐺)‘𝑎) ∈ { 0 }))) |
16 | 4, 14, 15 | mpbir2and 712 | 1 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∀wral 3062 {csn 4628 ‘cfv 6541 0gc0g 17382 Mndcmnd 18622 SubMndcsubmnd 18667 Grpcgrp 18816 invgcminusg 18817 SubGrpcsubg 18995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17142 df-ress 17171 df-plusg 17207 df-0g 17384 df-mgm 18558 df-sgrp 18607 df-mnd 18623 df-submnd 18669 df-grp 18819 df-minusg 18820 df-subg 18998 |
This theorem is referenced by: 0nsg 19044 eqg0subg 19068 qus0subgadd 19071 idressubgsymg 19273 pgp0 19459 slwn0 19478 lsm01 19534 lsm02 19535 dprdz 19895 dprdsn 19901 pgpfac1lem5 19944 tgptsmscls 23646 evpmsubg 32294 |
Copyright terms: Public domain | W3C validator |