MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0subg Structured version   Visualization version   GIF version

Theorem 0subg 18780
Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.)
Hypothesis
Ref Expression
0subg.z 0 = (0g𝐺)
Assertion
Ref Expression
0subg (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))

Proof of Theorem 0subg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 0subg.z . . . 4 0 = (0g𝐺)
31, 2grpidcl 18607 . . 3 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
43snssd 4742 . 2 (𝐺 ∈ Grp → { 0 } ⊆ (Base‘𝐺))
52fvexi 6788 . . . 4 0 ∈ V
65snnz 4712 . . 3 { 0 } ≠ ∅
76a1i 11 . 2 (𝐺 ∈ Grp → { 0 } ≠ ∅)
8 eqid 2738 . . . . . 6 (+g𝐺) = (+g𝐺)
91, 8, 2grplid 18609 . . . . 5 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
103, 9mpdan 684 . . . 4 (𝐺 ∈ Grp → ( 0 (+g𝐺) 0 ) = 0 )
11 ovex 7308 . . . . 5 ( 0 (+g𝐺) 0 ) ∈ V
1211elsn 4576 . . . 4 (( 0 (+g𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) = 0 )
1310, 12sylibr 233 . . 3 (𝐺 ∈ Grp → ( 0 (+g𝐺) 0 ) ∈ { 0 })
14 eqid 2738 . . . . 5 (invg𝐺) = (invg𝐺)
152, 14grpinvid 18636 . . . 4 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
16 fvex 6787 . . . . 5 ((invg𝐺)‘ 0 ) ∈ V
1716elsn 4576 . . . 4 (((invg𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg𝐺)‘ 0 ) = 0 )
1815, 17sylibr 233 . . 3 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) ∈ { 0 })
19 oveq1 7282 . . . . . . . 8 (𝑎 = 0 → (𝑎(+g𝐺)𝑏) = ( 0 (+g𝐺)𝑏))
2019eleq1d 2823 . . . . . . 7 (𝑎 = 0 → ((𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺)𝑏) ∈ { 0 }))
2120ralbidv 3112 . . . . . 6 (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ∀𝑏 ∈ { 0 } ( 0 (+g𝐺)𝑏) ∈ { 0 }))
22 oveq2 7283 . . . . . . . 8 (𝑏 = 0 → ( 0 (+g𝐺)𝑏) = ( 0 (+g𝐺) 0 ))
2322eleq1d 2823 . . . . . . 7 (𝑏 = 0 → (( 0 (+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 }))
245, 23ralsn 4617 . . . . . 6 (∀𝑏 ∈ { 0 } ( 0 (+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 })
2521, 24bitrdi 287 . . . . 5 (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 }))
26 fveq2 6774 . . . . . 6 (𝑎 = 0 → ((invg𝐺)‘𝑎) = ((invg𝐺)‘ 0 ))
2726eleq1d 2823 . . . . 5 (𝑎 = 0 → (((invg𝐺)‘𝑎) ∈ { 0 } ↔ ((invg𝐺)‘ 0 ) ∈ { 0 }))
2825, 27anbi12d 631 . . . 4 (𝑎 = 0 → ((∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g𝐺) 0 ) ∈ { 0 } ∧ ((invg𝐺)‘ 0 ) ∈ { 0 })))
295, 28ralsn 4617 . . 3 (∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g𝐺) 0 ) ∈ { 0 } ∧ ((invg𝐺)‘ 0 ) ∈ { 0 }))
3013, 18, 29sylanbrc 583 . 2 (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }))
311, 8, 14issubg2 18770 . 2 (𝐺 ∈ Grp → ({ 0 } ∈ (SubGrp‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ { 0 } ≠ ∅ ∧ ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }))))
324, 7, 30, 31mpbir3and 1341 1 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  c0 4256  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578  SubGrpcsubg 18749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752
This theorem is referenced by:  0nsg  18797  idressubgsymg  19018  pgp0  19201  slwn0  19220  lsm01  19277  lsm02  19278  dprdz  19633  dprdsn  19639  pgpfac1lem5  19682  tgptsmscls  23301  evpmsubg  31414
  Copyright terms: Public domain W3C validator