MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0subgALT Structured version   Visualization version   GIF version

Theorem 0subgALT 19610
Description: A shorter proof of 0subg 19191 using df-od 19570. (Contributed by SN, 31-Jan-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
0subgALT.z 0 = (0g𝐺)
Assertion
Ref Expression
0subgALT (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))

Proof of Theorem 0subgALT
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 (od‘𝐺) = (od‘𝐺)
2 id 22 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
3 grpmnd 18980 . . 3 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
4 0subgALT.z . . . 4 0 = (0g𝐺)
540subm 18852 . . 3 (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))
63, 5syl 17 . 2 (𝐺 ∈ Grp → { 0 } ∈ (SubMnd‘𝐺))
71, 4od1 19601 . . . 4 (𝐺 ∈ Grp → ((od‘𝐺)‘ 0 ) = 1)
8 1nn 12304 . . . 4 1 ∈ ℕ
97, 8eqeltrdi 2852 . . 3 (𝐺 ∈ Grp → ((od‘𝐺)‘ 0 ) ∈ ℕ)
104fvexi 6934 . . . 4 0 ∈ V
11 fveq2 6920 . . . . 5 (𝑎 = 0 → ((od‘𝐺)‘𝑎) = ((od‘𝐺)‘ 0 ))
1211eleq1d 2829 . . . 4 (𝑎 = 0 → (((od‘𝐺)‘𝑎) ∈ ℕ ↔ ((od‘𝐺)‘ 0 ) ∈ ℕ))
1310, 12ralsn 4705 . . 3 (∀𝑎 ∈ { 0 } ((od‘𝐺)‘𝑎) ∈ ℕ ↔ ((od‘𝐺)‘ 0 ) ∈ ℕ)
149, 13sylibr 234 . 2 (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } ((od‘𝐺)‘𝑎) ∈ ℕ)
151, 2, 6, 14finodsubmsubg 19609 1 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  {csn 4648  cfv 6573  1c1 11185  cn 12293  0gc0g 17499  Mndcmnd 18772  SubMndcsubmnd 18817  Grpcgrp 18973  SubGrpcsubg 19160  odcod 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-od 19570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator