MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0subgALT Structured version   Visualization version   GIF version

Theorem 0subgALT 19474
Description: A shorter proof of 0subg 19059 using df-od 19434. (Contributed by SN, 31-Jan-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
0subgALT.z 0 = (0g𝐺)
Assertion
Ref Expression
0subgALT (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))

Proof of Theorem 0subgALT
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (od‘𝐺) = (od‘𝐺)
2 id 22 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
3 grpmnd 18848 . . 3 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
4 0subgALT.z . . . 4 0 = (0g𝐺)
540subm 18720 . . 3 (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))
63, 5syl 17 . 2 (𝐺 ∈ Grp → { 0 } ∈ (SubMnd‘𝐺))
71, 4od1 19465 . . . 4 (𝐺 ∈ Grp → ((od‘𝐺)‘ 0 ) = 1)
8 1nn 12173 . . . 4 1 ∈ ℕ
97, 8eqeltrdi 2836 . . 3 (𝐺 ∈ Grp → ((od‘𝐺)‘ 0 ) ∈ ℕ)
104fvexi 6854 . . . 4 0 ∈ V
11 fveq2 6840 . . . . 5 (𝑎 = 0 → ((od‘𝐺)‘𝑎) = ((od‘𝐺)‘ 0 ))
1211eleq1d 2813 . . . 4 (𝑎 = 0 → (((od‘𝐺)‘𝑎) ∈ ℕ ↔ ((od‘𝐺)‘ 0 ) ∈ ℕ))
1310, 12ralsn 4641 . . 3 (∀𝑎 ∈ { 0 } ((od‘𝐺)‘𝑎) ∈ ℕ ↔ ((od‘𝐺)‘ 0 ) ∈ ℕ)
149, 13sylibr 234 . 2 (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } ((od‘𝐺)‘𝑎) ∈ ℕ)
151, 2, 6, 14finodsubmsubg 19473 1 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  {csn 4585  cfv 6499  1c1 11045  cn 12162  0gc0g 17378  Mndcmnd 18637  SubMndcsubmnd 18685  Grpcgrp 18841  SubGrpcsubg 19028  odcod 19430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-od 19434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator