Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > canth2g | Structured version Visualization version GIF version |
Description: Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of [Suppes] p. 97. (Contributed by NM, 7-Nov-2003.) |
Ref | Expression |
---|---|
canth2g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4546 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | breq12 5075 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝒫 𝑥 = 𝒫 𝐴) → (𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴)) | |
3 | 1, 2 | mpdan 683 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴)) |
4 | vex 3426 | . . 3 ⊢ 𝑥 ∈ V | |
5 | 4 | canth2 8866 | . 2 ⊢ 𝑥 ≺ 𝒫 𝑥 |
6 | 3, 5 | vtoclg 3495 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 𝒫 cpw 4530 class class class wbr 5070 ≺ csdm 8690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-en 8692 df-dom 8693 df-sdom 8694 |
This theorem is referenced by: 2pwuninel 8868 2pwne 8869 pwfiOLD 9044 djulepw 9879 isfin32i 10052 fin34 10077 hsmexlem1 10113 canth3 10248 ondomon 10250 gchdomtri 10316 canthp1lem1 10339 canthp1lem2 10340 pwfseqlem5 10350 gchdjuidm 10355 gchxpidm 10356 gchpwdom 10357 gchaclem 10365 gchhar 10366 tsksdom 10443 |
Copyright terms: Public domain | W3C validator |