![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > canth2g | Structured version Visualization version GIF version |
Description: Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of [Suppes] p. 97. (Contributed by NM, 7-Nov-2003.) |
Ref | Expression |
---|---|
canth2g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4636 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | breq12 5171 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝒫 𝑥 = 𝒫 𝐴) → (𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴)) | |
3 | 1, 2 | mpdan 686 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴)) |
4 | vex 3492 | . . 3 ⊢ 𝑥 ∈ V | |
5 | 4 | canth2 9196 | . 2 ⊢ 𝑥 ≺ 𝒫 𝑥 |
6 | 3, 5 | vtoclg 3566 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 𝒫 cpw 4622 class class class wbr 5166 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-en 9004 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: 2pwuninel 9198 2pwne 9199 pwfiOLD 9417 djulepw 10262 isfin32i 10434 fin34 10459 hsmexlem1 10495 canth3 10630 ondomon 10632 gchdomtri 10698 canthp1lem1 10721 canthp1lem2 10722 pwfseqlem5 10732 gchdjuidm 10737 gchxpidm 10738 gchpwdom 10739 gchaclem 10747 gchhar 10748 tsksdom 10825 fisdomnn 42239 |
Copyright terms: Public domain | W3C validator |