MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth2g Structured version   Visualization version   GIF version

Theorem canth2g 9145
Description: Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of [Suppes] p. 97. (Contributed by NM, 7-Nov-2003.)
Assertion
Ref Expression
canth2g (𝐴𝑉𝐴 ≺ 𝒫 𝐴)

Proof of Theorem canth2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4589 . . 3 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
2 breq12 5124 . . 3 ((𝑥 = 𝐴 ∧ 𝒫 𝑥 = 𝒫 𝐴) → (𝑥 ≺ 𝒫 𝑥𝐴 ≺ 𝒫 𝐴))
31, 2mpdan 687 . 2 (𝑥 = 𝐴 → (𝑥 ≺ 𝒫 𝑥𝐴 ≺ 𝒫 𝐴))
4 vex 3463 . . 3 𝑥 ∈ V
54canth2 9144 . 2 𝑥 ≺ 𝒫 𝑥
63, 5vtoclg 3533 1 (𝐴𝑉𝐴 ≺ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  𝒫 cpw 4575   class class class wbr 5119  csdm 8958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-en 8960  df-dom 8961  df-sdom 8962
This theorem is referenced by:  2pwuninel  9146  2pwne  9147  djulepw  10207  isfin32i  10379  fin34  10404  hsmexlem1  10440  canth3  10575  ondomon  10577  gchdomtri  10643  canthp1lem1  10666  canthp1lem2  10667  pwfseqlem5  10677  gchdjuidm  10682  gchxpidm  10683  gchpwdom  10684  gchaclem  10692  gchhar  10693  tsksdom  10770  fisdomnn  42295
  Copyright terms: Public domain W3C validator