| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > canth2g | Structured version Visualization version GIF version | ||
| Description: Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of [Suppes] p. 97. (Contributed by NM, 7-Nov-2003.) |
| Ref | Expression |
|---|---|
| canth2g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4580 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | breq12 5115 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝒫 𝑥 = 𝒫 𝐴) → (𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴)) | |
| 3 | 1, 2 | mpdan 687 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴)) |
| 4 | vex 3454 | . . 3 ⊢ 𝑥 ∈ V | |
| 5 | 4 | canth2 9100 | . 2 ⊢ 𝑥 ≺ 𝒫 𝑥 |
| 6 | 3, 5 | vtoclg 3523 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 𝒫 cpw 4566 class class class wbr 5110 ≺ csdm 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-en 8922 df-dom 8923 df-sdom 8924 |
| This theorem is referenced by: 2pwuninel 9102 2pwne 9103 djulepw 10153 isfin32i 10325 fin34 10350 hsmexlem1 10386 canth3 10521 ondomon 10523 gchdomtri 10589 canthp1lem1 10612 canthp1lem2 10613 pwfseqlem5 10623 gchdjuidm 10628 gchxpidm 10629 gchpwdom 10630 gchaclem 10638 gchhar 10639 tsksdom 10716 fisdomnn 42239 |
| Copyright terms: Public domain | W3C validator |