| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > canth2g | Structured version Visualization version GIF version | ||
| Description: Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of [Suppes] p. 97. (Contributed by NM, 7-Nov-2003.) |
| Ref | Expression |
|---|---|
| canth2g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4567 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | breq12 5100 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝒫 𝑥 = 𝒫 𝐴) → (𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴)) | |
| 3 | 1, 2 | mpdan 687 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴)) |
| 4 | vex 3442 | . . 3 ⊢ 𝑥 ∈ V | |
| 5 | 4 | canth2 9054 | . 2 ⊢ 𝑥 ≺ 𝒫 𝑥 |
| 6 | 3, 5 | vtoclg 3511 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 𝒫 cpw 4553 class class class wbr 5095 ≺ csdm 8878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-en 8880 df-dom 8881 df-sdom 8882 |
| This theorem is referenced by: 2pwuninel 9056 2pwne 9057 djulepw 10106 isfin32i 10278 fin34 10303 hsmexlem1 10339 canth3 10474 ondomon 10476 gchdomtri 10542 canthp1lem1 10565 canthp1lem2 10566 pwfseqlem5 10576 gchdjuidm 10581 gchxpidm 10582 gchpwdom 10583 gchaclem 10591 gchhar 10592 tsksdom 10669 fisdomnn 42217 |
| Copyright terms: Public domain | W3C validator |