| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > canth2g | Structured version Visualization version GIF version | ||
| Description: Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of [Suppes] p. 97. (Contributed by NM, 7-Nov-2003.) |
| Ref | Expression |
|---|---|
| canth2g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4563 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | breq12 5098 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝒫 𝑥 = 𝒫 𝐴) → (𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴)) | |
| 3 | 1, 2 | mpdan 687 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ 𝒫 𝑥 ↔ 𝐴 ≺ 𝒫 𝐴)) |
| 4 | vex 3441 | . . 3 ⊢ 𝑥 ∈ V | |
| 5 | 4 | canth2 9050 | . 2 ⊢ 𝑥 ≺ 𝒫 𝑥 |
| 6 | 3, 5 | vtoclg 3508 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 𝒫 cpw 4549 class class class wbr 5093 ≺ csdm 8874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-en 8876 df-dom 8877 df-sdom 8878 |
| This theorem is referenced by: 2pwuninel 9052 2pwne 9053 djulepw 10091 isfin32i 10263 fin34 10288 hsmexlem1 10324 canth3 10459 ondomon 10461 gchdomtri 10527 canthp1lem1 10550 canthp1lem2 10551 pwfseqlem5 10561 gchdjuidm 10566 gchxpidm 10567 gchpwdom 10568 gchaclem 10576 gchhar 10577 tsksdom 10654 fisdomnn 42362 |
| Copyright terms: Public domain | W3C validator |