MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth2g Structured version   Visualization version   GIF version

Theorem canth2g 9044
Description: Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of [Suppes] p. 97. (Contributed by NM, 7-Nov-2003.)
Assertion
Ref Expression
canth2g (𝐴𝑉𝐴 ≺ 𝒫 𝐴)

Proof of Theorem canth2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4564 . . 3 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
2 breq12 5096 . . 3 ((𝑥 = 𝐴 ∧ 𝒫 𝑥 = 𝒫 𝐴) → (𝑥 ≺ 𝒫 𝑥𝐴 ≺ 𝒫 𝐴))
31, 2mpdan 687 . 2 (𝑥 = 𝐴 → (𝑥 ≺ 𝒫 𝑥𝐴 ≺ 𝒫 𝐴))
4 vex 3440 . . 3 𝑥 ∈ V
54canth2 9043 . 2 𝑥 ≺ 𝒫 𝑥
63, 5vtoclg 3509 1 (𝐴𝑉𝐴 ≺ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  𝒫 cpw 4550   class class class wbr 5091  csdm 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-en 8870  df-dom 8871  df-sdom 8872
This theorem is referenced by:  2pwuninel  9045  2pwne  9046  djulepw  10081  isfin32i  10253  fin34  10278  hsmexlem1  10314  canth3  10449  ondomon  10451  gchdomtri  10517  canthp1lem1  10540  canthp1lem2  10541  pwfseqlem5  10551  gchdjuidm  10556  gchxpidm  10557  gchpwdom  10558  gchaclem  10566  gchhar  10567  tsksdom  10644  fisdomnn  42276
  Copyright terms: Public domain W3C validator