Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linevalexample Structured version   Visualization version   GIF version

Theorem linevalexample 47289
Description: The polynomial 𝑥 − 3 over evaluated for 𝑥 = 5 results in 2. (Contributed by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
linevalexample.p 𝑃 = (Poly1‘ℤring)
linevalexample.b 𝐵 = (Base‘𝑃)
linevalexample.x 𝑋 = (var1‘ℤring)
linevalexample.m = (-g𝑃)
linevalexample.a 𝐴 = (algSc‘𝑃)
linevalexample.g 𝐺 = (𝑋 (𝐴‘3))
linevalexample.o 𝑂 = (eval1‘ℤring)
Assertion
Ref Expression
linevalexample ((𝑂‘(𝑋 (𝐴‘3)))‘5) = 2

Proof of Theorem linevalexample
StepHypRef Expression
1 zringcrng 21305 . . 3 ring ∈ CRing
2 linevalexample.p . . . 4 𝑃 = (Poly1‘ℤring)
3 linevalexample.b . . . 4 𝐵 = (Base‘𝑃)
4 zringbas 21310 . . . 4 ℤ = (Base‘ℤring)
5 linevalexample.x . . . 4 𝑋 = (var1‘ℤring)
6 linevalexample.m . . . 4 = (-g𝑃)
7 linevalexample.a . . . 4 𝐴 = (algSc‘𝑃)
8 eqid 2724 . . . 4 (𝑋 (𝐴‘3)) = (𝑋 (𝐴‘3))
9 3z 12593 . . . . 5 3 ∈ ℤ
109a1i 11 . . . 4 (ℤring ∈ CRing → 3 ∈ ℤ)
11 linevalexample.o . . . 4 𝑂 = (eval1‘ℤring)
12 id 22 . . . 4 (ℤring ∈ CRing → ℤring ∈ CRing)
13 5nn0 12490 . . . . . 6 5 ∈ ℕ0
1413nn0zi 12585 . . . . 5 5 ∈ ℤ
1514a1i 11 . . . 4 (ℤring ∈ CRing → 5 ∈ ℤ)
162, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15lineval 47288 . . 3 (ℤring ∈ CRing → ((𝑂‘(𝑋 (𝐴‘3)))‘5) = (5(-g‘ℤring)3))
171, 16ax-mp 5 . 2 ((𝑂‘(𝑋 (𝐴‘3)))‘5) = (5(-g‘ℤring)3)
18 eqid 2724 . . . 4 (-g‘ℤring) = (-g‘ℤring)
1918zringsubgval 21327 . . 3 ((5 ∈ ℤ ∧ 3 ∈ ℤ) → (5 − 3) = (5(-g‘ℤring)3))
2014, 9, 19mp2an 689 . 2 (5 − 3) = (5(-g‘ℤring)3)
21 5cn 12298 . . 3 5 ∈ ℂ
22 3cn 12291 . . 3 3 ∈ ℂ
23 2cn 12285 . . 3 2 ∈ ℂ
24 3p2e5 12361 . . 3 (3 + 2) = 5
2521, 22, 23, 24subaddrii 11547 . 2 (5 − 3) = 2
2617, 20, 253eqtr2i 2758 1 ((𝑂‘(𝑋 (𝐴‘3)))‘5) = 2
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  cfv 6534  (class class class)co 7402  cmin 11442  2c2 12265  3c3 12266  5c5 12268  cz 12556  Basecbs 17145  -gcsg 18857  CRingccrg 20131  ringczring 21303  algSccascl 21717  var1cv1 22020  Poly1cpl1 22021  eval1ce1 22157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-ofr 7665  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-sup 9434  df-oi 9502  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-fz 13483  df-fzo 13626  df-seq 13965  df-hash 14289  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-0g 17388  df-gsum 17389  df-prds 17394  df-pws 17396  df-mre 17531  df-mrc 17532  df-acs 17534  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-grp 18858  df-minusg 18859  df-sbg 18860  df-mulg 18988  df-subg 19042  df-ghm 19131  df-cntz 19225  df-cmn 19694  df-abl 19695  df-mgp 20032  df-rng 20050  df-ur 20079  df-srg 20084  df-ring 20132  df-cring 20133  df-rhm 20366  df-subrng 20438  df-subrg 20463  df-lmod 20700  df-lss 20771  df-lsp 20811  df-cnfld 21231  df-zring 21304  df-assa 21718  df-asp 21719  df-ascl 21720  df-psr 21773  df-mvr 21774  df-mpl 21775  df-opsr 21777  df-evls 21947  df-evl 21948  df-psr1 22024  df-vr1 22025  df-ply1 22026  df-evl1 22159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator