| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > linevalexample | Structured version Visualization version GIF version | ||
| Description: The polynomial 𝑥 − 3 over ℤ evaluated for 𝑥 = 5 results in 2. (Contributed by AV, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| linevalexample.p | ⊢ 𝑃 = (Poly1‘ℤring) |
| linevalexample.b | ⊢ 𝐵 = (Base‘𝑃) |
| linevalexample.x | ⊢ 𝑋 = (var1‘ℤring) |
| linevalexample.m | ⊢ − = (-g‘𝑃) |
| linevalexample.a | ⊢ 𝐴 = (algSc‘𝑃) |
| linevalexample.g | ⊢ 𝐺 = (𝑋 − (𝐴‘3)) |
| linevalexample.o | ⊢ 𝑂 = (eval1‘ℤring) |
| Ref | Expression |
|---|---|
| linevalexample | ⊢ ((𝑂‘(𝑋 − (𝐴‘3)))‘5) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringcrng 21390 | . . 3 ⊢ ℤring ∈ CRing | |
| 2 | linevalexample.p | . . . 4 ⊢ 𝑃 = (Poly1‘ℤring) | |
| 3 | linevalexample.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 4 | zringbas 21395 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
| 5 | linevalexample.x | . . . 4 ⊢ 𝑋 = (var1‘ℤring) | |
| 6 | linevalexample.m | . . . 4 ⊢ − = (-g‘𝑃) | |
| 7 | linevalexample.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑃) | |
| 8 | eqid 2729 | . . . 4 ⊢ (𝑋 − (𝐴‘3)) = (𝑋 − (𝐴‘3)) | |
| 9 | 3z 12542 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (ℤring ∈ CRing → 3 ∈ ℤ) |
| 11 | linevalexample.o | . . . 4 ⊢ 𝑂 = (eval1‘ℤring) | |
| 12 | id 22 | . . . 4 ⊢ (ℤring ∈ CRing → ℤring ∈ CRing) | |
| 13 | 5nn0 12438 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
| 14 | 13 | nn0zi 12534 | . . . . 5 ⊢ 5 ∈ ℤ |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (ℤring ∈ CRing → 5 ∈ ℤ) |
| 16 | 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15 | lineval 48376 | . . 3 ⊢ (ℤring ∈ CRing → ((𝑂‘(𝑋 − (𝐴‘3)))‘5) = (5(-g‘ℤring)3)) |
| 17 | 1, 16 | ax-mp 5 | . 2 ⊢ ((𝑂‘(𝑋 − (𝐴‘3)))‘5) = (5(-g‘ℤring)3) |
| 18 | eqid 2729 | . . . 4 ⊢ (-g‘ℤring) = (-g‘ℤring) | |
| 19 | 18 | zringsubgval 21412 | . . 3 ⊢ ((5 ∈ ℤ ∧ 3 ∈ ℤ) → (5 − 3) = (5(-g‘ℤring)3)) |
| 20 | 14, 9, 19 | mp2an 692 | . 2 ⊢ (5 − 3) = (5(-g‘ℤring)3) |
| 21 | 5cn 12250 | . . 3 ⊢ 5 ∈ ℂ | |
| 22 | 3cn 12243 | . . 3 ⊢ 3 ∈ ℂ | |
| 23 | 2cn 12237 | . . 3 ⊢ 2 ∈ ℂ | |
| 24 | 3p2e5 12308 | . . 3 ⊢ (3 + 2) = 5 | |
| 25 | 21, 22, 23, 24 | subaddrii 11487 | . 2 ⊢ (5 − 3) = 2 |
| 26 | 17, 20, 25 | 3eqtr2i 2758 | 1 ⊢ ((𝑂‘(𝑋 − (𝐴‘3)))‘5) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 − cmin 11381 2c2 12217 3c3 12218 5c5 12220 ℤcz 12505 Basecbs 17155 -gcsg 18849 CRingccrg 20154 ℤringczring 21388 algSccascl 21794 var1cv1 22093 Poly1cpl1 22094 eval1ce1 22234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-cring 20156 df-rhm 20392 df-subrng 20466 df-subrg 20490 df-lmod 20800 df-lss 20870 df-lsp 20910 df-cnfld 21297 df-zring 21389 df-assa 21795 df-asp 21796 df-ascl 21797 df-psr 21851 df-mvr 21852 df-mpl 21853 df-opsr 21855 df-evls 22014 df-evl 22015 df-psr1 22097 df-vr1 22098 df-ply1 22099 df-evl1 22236 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |