| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > linevalexample | Structured version Visualization version GIF version | ||
| Description: The polynomial 𝑥 − 3 over ℤ evaluated for 𝑥 = 5 results in 2. (Contributed by AV, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| linevalexample.p | ⊢ 𝑃 = (Poly1‘ℤring) |
| linevalexample.b | ⊢ 𝐵 = (Base‘𝑃) |
| linevalexample.x | ⊢ 𝑋 = (var1‘ℤring) |
| linevalexample.m | ⊢ − = (-g‘𝑃) |
| linevalexample.a | ⊢ 𝐴 = (algSc‘𝑃) |
| linevalexample.g | ⊢ 𝐺 = (𝑋 − (𝐴‘3)) |
| linevalexample.o | ⊢ 𝑂 = (eval1‘ℤring) |
| Ref | Expression |
|---|---|
| linevalexample | ⊢ ((𝑂‘(𝑋 − (𝐴‘3)))‘5) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringcrng 21364 | . . 3 ⊢ ℤring ∈ CRing | |
| 2 | linevalexample.p | . . . 4 ⊢ 𝑃 = (Poly1‘ℤring) | |
| 3 | linevalexample.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 4 | zringbas 21369 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
| 5 | linevalexample.x | . . . 4 ⊢ 𝑋 = (var1‘ℤring) | |
| 6 | linevalexample.m | . . . 4 ⊢ − = (-g‘𝑃) | |
| 7 | linevalexample.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑃) | |
| 8 | eqid 2730 | . . . 4 ⊢ (𝑋 − (𝐴‘3)) = (𝑋 − (𝐴‘3)) | |
| 9 | 3z 12582 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (ℤring ∈ CRing → 3 ∈ ℤ) |
| 11 | linevalexample.o | . . . 4 ⊢ 𝑂 = (eval1‘ℤring) | |
| 12 | id 22 | . . . 4 ⊢ (ℤring ∈ CRing → ℤring ∈ CRing) | |
| 13 | 5nn0 12478 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
| 14 | 13 | nn0zi 12574 | . . . . 5 ⊢ 5 ∈ ℤ |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (ℤring ∈ CRing → 5 ∈ ℤ) |
| 16 | 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15 | lineval 48312 | . . 3 ⊢ (ℤring ∈ CRing → ((𝑂‘(𝑋 − (𝐴‘3)))‘5) = (5(-g‘ℤring)3)) |
| 17 | 1, 16 | ax-mp 5 | . 2 ⊢ ((𝑂‘(𝑋 − (𝐴‘3)))‘5) = (5(-g‘ℤring)3) |
| 18 | eqid 2730 | . . . 4 ⊢ (-g‘ℤring) = (-g‘ℤring) | |
| 19 | 18 | zringsubgval 21386 | . . 3 ⊢ ((5 ∈ ℤ ∧ 3 ∈ ℤ) → (5 − 3) = (5(-g‘ℤring)3)) |
| 20 | 14, 9, 19 | mp2an 692 | . 2 ⊢ (5 − 3) = (5(-g‘ℤring)3) |
| 21 | 5cn 12285 | . . 3 ⊢ 5 ∈ ℂ | |
| 22 | 3cn 12278 | . . 3 ⊢ 3 ∈ ℂ | |
| 23 | 2cn 12272 | . . 3 ⊢ 2 ∈ ℂ | |
| 24 | 3p2e5 12348 | . . 3 ⊢ (3 + 2) = 5 | |
| 25 | 21, 22, 23, 24 | subaddrii 11529 | . 2 ⊢ (5 − 3) = 2 |
| 26 | 17, 20, 25 | 3eqtr2i 2759 | 1 ⊢ ((𝑂‘(𝑋 − (𝐴‘3)))‘5) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6519 (class class class)co 7394 − cmin 11423 2c2 12252 3c3 12253 5c5 12255 ℤcz 12545 Basecbs 17185 -gcsg 18873 CRingccrg 20149 ℤringczring 21362 algSccascl 21767 var1cv1 22066 Poly1cpl1 22067 eval1ce1 22207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-addf 11165 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-ofr 7661 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-sup 9411 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-fzo 13629 df-seq 13977 df-hash 14306 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-0g 17410 df-gsum 17411 df-prds 17416 df-pws 17418 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-cntz 19255 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-srg 20102 df-ring 20150 df-cring 20151 df-rhm 20387 df-subrng 20461 df-subrg 20485 df-lmod 20774 df-lss 20844 df-lsp 20884 df-cnfld 21271 df-zring 21363 df-assa 21768 df-asp 21769 df-ascl 21770 df-psr 21824 df-mvr 21825 df-mpl 21826 df-opsr 21828 df-evls 21987 df-evl 21988 df-psr1 22070 df-vr1 22071 df-ply1 22072 df-evl1 22209 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |