MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2exp5 Structured version   Visualization version   GIF version

Theorem 2exp5 16997
Description: Two to the fifth power is 32. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
2exp5 (2↑5) = 32

Proof of Theorem 2exp5
StepHypRef Expression
1 3p2e5 12271 . . . . 5 (3 + 2) = 5
21eqcomi 2740 . . . 4 5 = (3 + 2)
32oveq2i 7357 . . 3 (2↑5) = (2↑(3 + 2))
4 2cn 12200 . . . . 5 2 ∈ ℂ
5 3nn0 12399 . . . . 5 3 ∈ ℕ0
6 2nn0 12398 . . . . 5 2 ∈ ℕ0
7 expadd 14011 . . . . 5 ((2 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (2↑(3 + 2)) = ((2↑3) · (2↑2)))
84, 5, 6, 7mp3an 1463 . . . 4 (2↑(3 + 2)) = ((2↑3) · (2↑2))
9 cu2 14107 . . . . 5 (2↑3) = 8
10 sq2 14104 . . . . 5 (2↑2) = 4
119, 10oveq12i 7358 . . . 4 ((2↑3) · (2↑2)) = (8 · 4)
128, 11eqtri 2754 . . 3 (2↑(3 + 2)) = (8 · 4)
133, 12eqtri 2754 . 2 (2↑5) = (8 · 4)
14 8t4e32 12705 . 2 (8 · 4) = 32
1513, 14eqtri 2754 1 (2↑5) = 32
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004   + caddc 11009   · cmul 11011  2c2 12180  3c3 12181  4c4 12182  5c5 12183  8c8 12186  0cn0 12381  cdc 12588  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-seq 13909  df-exp 13969
This theorem is referenced by:  3lexlogpow2ineq1  42097  m5prm  47635  2exp340mod341  47770  ackval3012  48730
  Copyright terms: Public domain W3C validator