Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exp5 | Structured version Visualization version GIF version |
Description: Two to the fifth power is 32. (Contributed by AV, 16-Aug-2021.) |
Ref | Expression |
---|---|
2exp5 | ⊢ (2↑5) = ;32 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3p2e5 12134 | . . . . 5 ⊢ (3 + 2) = 5 | |
2 | 1 | eqcomi 2747 | . . . 4 ⊢ 5 = (3 + 2) |
3 | 2 | oveq2i 7278 | . . 3 ⊢ (2↑5) = (2↑(3 + 2)) |
4 | 2cn 12058 | . . . . 5 ⊢ 2 ∈ ℂ | |
5 | 3nn0 12261 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
6 | 2nn0 12260 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
7 | expadd 13835 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (2↑(3 + 2)) = ((2↑3) · (2↑2))) | |
8 | 4, 5, 6, 7 | mp3an 1460 | . . . 4 ⊢ (2↑(3 + 2)) = ((2↑3) · (2↑2)) |
9 | cu2 13927 | . . . . 5 ⊢ (2↑3) = 8 | |
10 | sq2 13924 | . . . . 5 ⊢ (2↑2) = 4 | |
11 | 9, 10 | oveq12i 7279 | . . . 4 ⊢ ((2↑3) · (2↑2)) = (8 · 4) |
12 | 8, 11 | eqtri 2766 | . . 3 ⊢ (2↑(3 + 2)) = (8 · 4) |
13 | 3, 12 | eqtri 2766 | . 2 ⊢ (2↑5) = (8 · 4) |
14 | 8t4e32 12564 | . 2 ⊢ (8 · 4) = ;32 | |
15 | 13, 14 | eqtri 2766 | 1 ⊢ (2↑5) = ;32 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7267 ℂcc 10879 + caddc 10884 · cmul 10886 2c2 12038 3c3 12039 4c4 12040 5c5 12041 8c8 12044 ℕ0cn0 12243 ;cdc 12447 ↑cexp 13792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-seq 13732 df-exp 13793 |
This theorem is referenced by: 3lexlogpow2ineq1 40074 m5prm 45028 2exp340mod341 45163 ackval3012 46016 |
Copyright terms: Public domain | W3C validator |