Proof of Theorem 41prothprmlem2
Step | Hyp | Ref
| Expression |
1 | | 41prothprm.p |
. . . . 5
⊢ 𝑃 = ;41 |
2 | 1 | 41prothprmlem1 44957 |
. . . 4
⊢ ((𝑃 − 1) / 2) = ;20 |
3 | 2 | oveq2i 7266 |
. . 3
⊢
(3↑((𝑃 −
1) / 2)) = (3↑;20) |
4 | 3 | oveq1i 7265 |
. 2
⊢
((3↑((𝑃 −
1) / 2)) mod 𝑃) =
((3↑;20) mod 𝑃) |
5 | | 5cn 11991 |
. . . . . . . . 9
⊢ 5 ∈
ℂ |
6 | | 4cn 11988 |
. . . . . . . . 9
⊢ 4 ∈
ℂ |
7 | | 5t4e20 12468 |
. . . . . . . . 9
⊢ (5
· 4) = ;20 |
8 | 5, 6, 7 | mulcomli 10915 |
. . . . . . . 8
⊢ (4
· 5) = ;20 |
9 | 8 | eqcomi 2747 |
. . . . . . 7
⊢ ;20 = (4 · 5) |
10 | 9 | oveq2i 7266 |
. . . . . 6
⊢
(3↑;20) = (3↑(4
· 5)) |
11 | | 3cn 11984 |
. . . . . . 7
⊢ 3 ∈
ℂ |
12 | | 4nn0 12182 |
. . . . . . 7
⊢ 4 ∈
ℕ0 |
13 | | 5nn0 12183 |
. . . . . . 7
⊢ 5 ∈
ℕ0 |
14 | | expmul 13756 |
. . . . . . 7
⊢ ((3
∈ ℂ ∧ 4 ∈ ℕ0 ∧ 5 ∈
ℕ0) → (3↑(4 · 5)) =
((3↑4)↑5)) |
15 | 11, 12, 13, 14 | mp3an 1459 |
. . . . . 6
⊢
(3↑(4 · 5)) = ((3↑4)↑5) |
16 | 10, 15 | eqtri 2766 |
. . . . 5
⊢
(3↑;20) =
((3↑4)↑5) |
17 | 16 | oveq1i 7265 |
. . . 4
⊢
((3↑;20) mod ;41) = (((3↑4)↑5) mod ;41) |
18 | | 3z 12283 |
. . . . . . 7
⊢ 3 ∈
ℤ |
19 | | zexpcl 13725 |
. . . . . . 7
⊢ ((3
∈ ℤ ∧ 4 ∈ ℕ0) → (3↑4) ∈
ℤ) |
20 | 18, 12, 19 | mp2an 688 |
. . . . . 6
⊢
(3↑4) ∈ ℤ |
21 | | neg1z 12286 |
. . . . . 6
⊢ -1 ∈
ℤ |
22 | 20, 21 | pm3.2i 470 |
. . . . 5
⊢
((3↑4) ∈ ℤ ∧ -1 ∈ ℤ) |
23 | | 1nn 11914 |
. . . . . . . 8
⊢ 1 ∈
ℕ |
24 | 12, 23 | decnncl 12386 |
. . . . . . 7
⊢ ;41 ∈ ℕ |
25 | | nnrp 12670 |
. . . . . . 7
⊢ (;41 ∈ ℕ → ;41 ∈
ℝ+) |
26 | 24, 25 | ax-mp 5 |
. . . . . 6
⊢ ;41 ∈
ℝ+ |
27 | 13, 26 | pm3.2i 470 |
. . . . 5
⊢ (5 ∈
ℕ0 ∧ ;41
∈ ℝ+) |
28 | | 3exp4mod41 44956 |
. . . . 5
⊢
((3↑4) mod ;41) = (-1
mod ;41) |
29 | | modexp 13881 |
. . . . 5
⊢
((((3↑4) ∈ ℤ ∧ -1 ∈ ℤ) ∧ (5 ∈
ℕ0 ∧ ;41
∈ ℝ+) ∧ ((3↑4) mod ;41) = (-1 mod ;41)) → (((3↑4)↑5) mod ;41) = ((-1↑5) mod ;41)) |
30 | 22, 27, 28, 29 | mp3an 1459 |
. . . 4
⊢
(((3↑4)↑5) mod ;41) = ((-1↑5) mod ;41) |
31 | | 3p2e5 12054 |
. . . . . . . 8
⊢ (3 + 2) =
5 |
32 | 31 | eqcomi 2747 |
. . . . . . 7
⊢ 5 = (3 +
2) |
33 | 32 | oveq2i 7266 |
. . . . . 6
⊢
(-1↑5) = (-1↑(3 + 2)) |
34 | | 2z 12282 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
35 | | m1expaddsub 19021 |
. . . . . . . 8
⊢ ((3
∈ ℤ ∧ 2 ∈ ℤ) → (-1↑(3 − 2)) =
(-1↑(3 + 2))) |
36 | 18, 34, 35 | mp2an 688 |
. . . . . . 7
⊢
(-1↑(3 − 2)) = (-1↑(3 + 2)) |
37 | 36 | eqcomi 2747 |
. . . . . 6
⊢
(-1↑(3 + 2)) = (-1↑(3 − 2)) |
38 | | 2cn 11978 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
39 | | ax-1cn 10860 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
40 | | 2p1e3 12045 |
. . . . . . . . 9
⊢ (2 + 1) =
3 |
41 | 11, 38, 39, 40 | subaddrii 11240 |
. . . . . . . 8
⊢ (3
− 2) = 1 |
42 | 41 | oveq2i 7266 |
. . . . . . 7
⊢
(-1↑(3 − 2)) = (-1↑1) |
43 | | neg1cn 12017 |
. . . . . . . 8
⊢ -1 ∈
ℂ |
44 | | exp1 13716 |
. . . . . . . 8
⊢ (-1
∈ ℂ → (-1↑1) = -1) |
45 | 43, 44 | ax-mp 5 |
. . . . . . 7
⊢
(-1↑1) = -1 |
46 | 42, 45 | eqtri 2766 |
. . . . . 6
⊢
(-1↑(3 − 2)) = -1 |
47 | 33, 37, 46 | 3eqtri 2770 |
. . . . 5
⊢
(-1↑5) = -1 |
48 | 47 | oveq1i 7265 |
. . . 4
⊢
((-1↑5) mod ;41) = (-1
mod ;41) |
49 | 17, 30, 48 | 3eqtri 2770 |
. . 3
⊢
((3↑;20) mod ;41) = (-1 mod ;41) |
50 | 1 | oveq2i 7266 |
. . 3
⊢
((3↑;20) mod 𝑃) = ((3↑;20) mod ;41) |
51 | 1 | oveq2i 7266 |
. . 3
⊢ (-1 mod
𝑃) = (-1 mod ;41) |
52 | 49, 50, 51 | 3eqtr4i 2776 |
. 2
⊢
((3↑;20) mod 𝑃) = (-1 mod 𝑃) |
53 | 4, 52 | eqtri 2766 |
1
⊢
((3↑((𝑃 −
1) / 2)) mod 𝑃) = (-1 mod
𝑃) |