Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abs0 | Structured version Visualization version GIF version |
Description: The absolute value of 0. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
abs0 | ⊢ (abs‘0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11068 | . . 3 ⊢ 0 ∈ ℂ | |
2 | absval 15048 | . . 3 ⊢ (0 ∈ ℂ → (abs‘0) = (√‘(0 · (∗‘0)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (abs‘0) = (√‘(0 · (∗‘0))) |
4 | 1 | cjcli 14979 | . . . 4 ⊢ (∗‘0) ∈ ℂ |
5 | 4 | mul02i 11265 | . . 3 ⊢ (0 · (∗‘0)) = 0 |
6 | 5 | fveq2i 6828 | . 2 ⊢ (√‘(0 · (∗‘0))) = (√‘0) |
7 | sqrt0 15052 | . 2 ⊢ (√‘0) = 0 | |
8 | 3, 6, 7 | 3eqtri 2768 | 1 ⊢ (abs‘0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ‘cfv 6479 (class class class)co 7337 ℂcc 10970 0cc0 10972 · cmul 10977 ∗ccj 14906 √csqrt 15043 abscabs 15044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-seq 13823 df-exp 13884 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 |
This theorem is referenced by: abs00 15100 abs1m 15146 climconst 15351 rlimconst 15352 fsumabs 15612 georeclim 15683 geoisumr 15689 dvdsabseq 16121 gcd0id 16325 lcmid 16411 4sqlem19 16761 absabv 20761 gzrngunit 20770 zringunit 20794 aannenlem2 25595 aalioulem3 25600 tanabsge 25769 sinkpi 25784 sineq0 25786 isosctrlem2 26075 lgamgulmlem1 26284 ftalem3 26330 mule1 26403 zabsle1 26550 lgslem2 26552 lgsfcl2 26557 bcsiALT 29829 0cnfn 30630 nmfn0 30637 nmophmi 30681 nmcfnexi 30701 dnizeq0 34751 unbdqndv2lem2 34786 mblfinlem2 35920 ftc1anclem7 35961 ftc1anclem8 35962 ftc1anc 35963 dvgrat 42251 radcnvrat 42253 sineq0ALT 42878 constlimc 43501 0cnv 43619 |
Copyright terms: Public domain | W3C validator |