MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmul Structured version   Visualization version   GIF version

Theorem absmul 15203
Description: Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absmul ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))

Proof of Theorem absmul
StepHypRef Expression
1 cjmul 15051 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
21oveq2d 7368 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵))) = ((𝐴 · 𝐵) · ((∗‘𝐴) · (∗‘𝐵))))
3 simpl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
53cjcld 15105 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐴) ∈ ℂ)
64cjcld 15105 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐵) ∈ ℂ)
73, 4, 5, 6mul4d 11332 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · ((∗‘𝐴) · (∗‘𝐵))) = ((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵))))
82, 7eqtrd 2768 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵))) = ((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵))))
98fveq2d 6832 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))) = (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))))
10 cjmulrcl 15053 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ)
11 cjmulge0 15055 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴)))
1210, 11jca 511 . . . 4 (𝐴 ∈ ℂ → ((𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴))))
13 cjmulrcl 15053 . . . . 5 (𝐵 ∈ ℂ → (𝐵 · (∗‘𝐵)) ∈ ℝ)
14 cjmulge0 15055 . . . . 5 (𝐵 ∈ ℂ → 0 ≤ (𝐵 · (∗‘𝐵)))
1513, 14jca 511 . . . 4 (𝐵 ∈ ℂ → ((𝐵 · (∗‘𝐵)) ∈ ℝ ∧ 0 ≤ (𝐵 · (∗‘𝐵))))
16 sqrtmul 15168 . . . 4 ((((𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴))) ∧ ((𝐵 · (∗‘𝐵)) ∈ ℝ ∧ 0 ≤ (𝐵 · (∗‘𝐵)))) → (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
1712, 15, 16syl2an 596 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
189, 17eqtrd 2768 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
19 mulcl 11097 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
20 absval 15147 . . 3 ((𝐴 · 𝐵) ∈ ℂ → (abs‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))))
2119, 20syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))))
22 absval 15147 . . 3 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
23 absval 15147 . . 3 (𝐵 ∈ ℂ → (abs‘𝐵) = (√‘(𝐵 · (∗‘𝐵))))
2422, 23oveqan12d 7371 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) · (abs‘𝐵)) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
2518, 21, 243eqtr4d 2778 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013   · cmul 11018  cle 11154  ccj 15005  csqrt 15142  abscabs 15143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145
This theorem is referenced by:  absdiv  15204  absexp  15213  absimle  15218  abstri  15240  absmuli  15314  absmuld  15366  ef01bndlem  16095  absmulgcd  16462  absabv  21363  iblabs  25758  pige3ALT  26457  atantayl  26875  efrlim  26907  efrlimOLD  26908  lgslem3  27238  mul2sq  27358  cnnv  30659  bcsiALT  31161  nmcfnexi  32033  iblabsnc  37745  iblmulc2nc  37746  ftc1anclem6  37759  ftc1anclem7  37760  ftc1anclem8  37761  modlt0b  47488
  Copyright terms: Public domain W3C validator