MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmul Structured version   Visualization version   GIF version

Theorem absmul 14653
Description: Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absmul ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))

Proof of Theorem absmul
StepHypRef Expression
1 cjmul 14500 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
21oveq2d 7171 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵))) = ((𝐴 · 𝐵) · ((∗‘𝐴) · (∗‘𝐵))))
3 simpl 485 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 487 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
53cjcld 14554 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐴) ∈ ℂ)
64cjcld 14554 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐵) ∈ ℂ)
73, 4, 5, 6mul4d 10851 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · ((∗‘𝐴) · (∗‘𝐵))) = ((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵))))
82, 7eqtrd 2856 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵))) = ((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵))))
98fveq2d 6673 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))) = (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))))
10 cjmulrcl 14502 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ)
11 cjmulge0 14504 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴)))
1210, 11jca 514 . . . 4 (𝐴 ∈ ℂ → ((𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴))))
13 cjmulrcl 14502 . . . . 5 (𝐵 ∈ ℂ → (𝐵 · (∗‘𝐵)) ∈ ℝ)
14 cjmulge0 14504 . . . . 5 (𝐵 ∈ ℂ → 0 ≤ (𝐵 · (∗‘𝐵)))
1513, 14jca 514 . . . 4 (𝐵 ∈ ℂ → ((𝐵 · (∗‘𝐵)) ∈ ℝ ∧ 0 ≤ (𝐵 · (∗‘𝐵))))
16 sqrtmul 14618 . . . 4 ((((𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴))) ∧ ((𝐵 · (∗‘𝐵)) ∈ ℝ ∧ 0 ≤ (𝐵 · (∗‘𝐵)))) → (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
1712, 15, 16syl2an 597 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · (∗‘𝐴)) · (𝐵 · (∗‘𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
189, 17eqtrd 2856 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
19 mulcl 10620 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
20 absval 14596 . . 3 ((𝐴 · 𝐵) ∈ ℂ → (abs‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))))
2119, 20syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = (√‘((𝐴 · 𝐵) · (∗‘(𝐴 · 𝐵)))))
22 absval 14596 . . 3 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
23 absval 14596 . . 3 (𝐵 ∈ ℂ → (abs‘𝐵) = (√‘(𝐵 · (∗‘𝐵))))
2422, 23oveqan12d 7174 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) · (abs‘𝐵)) = ((√‘(𝐴 · (∗‘𝐴))) · (√‘(𝐵 · (∗‘𝐵)))))
2518, 21, 243eqtr4d 2866 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110   class class class wbr 5065  cfv 6354  (class class class)co 7155  cc 10534  cr 10535  0cc0 10536   · cmul 10541  cle 10675  ccj 14454  csqrt 14591  abscabs 14592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594
This theorem is referenced by:  absdiv  14654  absexp  14663  absimle  14668  abstri  14689  absmuli  14763  absmuld  14813  ef01bndlem  15536  absmulgcd  15896  gcdmultiplezOLD  15900  absabv  20601  iblabs  24428  pige3ALT  25104  atantayl  25514  efrlim  25546  lgslem3  25874  mul2sq  25994  cnnv  28453  bcsiALT  28955  nmcfnexi  29827  iblabsnc  34955  iblmulc2nc  34956  ftc1anclem6  34971  ftc1anclem7  34972  ftc1anclem8  34973
  Copyright terms: Public domain W3C validator