| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphabscl | Structured version Visualization version GIF version | ||
| Description: The scalar field of a subcomplex pre-Hilbert space is closed under the absolute value operation. (Contributed by Mario Carneiro, 11-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cphsca.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| cphabscl | ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsca.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | cphsca.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 3 | 1, 2 | cphsubrg 25102 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld)) |
| 4 | cnfldbas 21290 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
| 5 | 4 | subrgss 20482 | . . . . 5 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝐾 ⊆ ℂ) |
| 7 | 6 | sselda 3929 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ ℂ) |
| 8 | absval 15140 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
| 10 | simpl 482 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → 𝑊 ∈ ℂPreHil) | |
| 11 | 3 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → 𝐾 ∈ (SubRing‘ℂfld)) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ 𝐾) | |
| 13 | 1, 2 | cphcjcl 25105 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (∗‘𝐴) ∈ 𝐾) |
| 14 | cnfldmul 21294 | . . . . 5 ⊢ · = (.r‘ℂfld) | |
| 15 | 14 | subrgmcl 20494 | . . . 4 ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐴 ∈ 𝐾 ∧ (∗‘𝐴) ∈ 𝐾) → (𝐴 · (∗‘𝐴)) ∈ 𝐾) |
| 16 | 11, 12, 13, 15 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (𝐴 · (∗‘𝐴)) ∈ 𝐾) |
| 17 | 7 | cjmulrcld 15108 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (𝐴 · (∗‘𝐴)) ∈ ℝ) |
| 18 | 7 | cjmulge0d 15110 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → 0 ≤ (𝐴 · (∗‘𝐴))) |
| 19 | 1, 2 | cphsqrtcl 25106 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ ((𝐴 · (∗‘𝐴)) ∈ 𝐾 ∧ (𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴)))) → (√‘(𝐴 · (∗‘𝐴))) ∈ 𝐾) |
| 20 | 10, 16, 17, 18, 19 | syl13anc 1374 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (√‘(𝐴 · (∗‘𝐴))) ∈ 𝐾) |
| 21 | 9, 20 | eqeltrd 2831 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 0cc0 11001 · cmul 11006 ≤ cle 11142 ∗ccj 14998 √csqrt 15135 abscabs 15136 Basecbs 17115 Scalarcsca 17159 SubRingcsubrg 20479 ℂfldccnfld 21286 ℂPreHilccph 25088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 ax-mulf 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-rp 12886 df-ico 13246 df-fz 13403 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-grp 18844 df-minusg 18845 df-subg 19031 df-ghm 19120 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-rhm 20385 df-subrng 20456 df-subrg 20480 df-drng 20641 df-staf 20749 df-srng 20750 df-lvec 21032 df-cnfld 21287 df-phl 21558 df-cph 25090 |
| This theorem is referenced by: cphsqrtcl2 25108 |
| Copyright terms: Public domain | W3C validator |