![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphabscl | Structured version Visualization version GIF version |
Description: The scalar field of a subcomplex pre-Hilbert space is closed under the absolute value operation. (Contributed by Mario Carneiro, 11-Oct-2015.) |
Ref | Expression |
---|---|
cphsca.f | β’ πΉ = (Scalarβπ) |
cphsca.k | β’ πΎ = (BaseβπΉ) |
Ref | Expression |
---|---|
cphabscl | β’ ((π β βPreHil β§ π΄ β πΎ) β (absβπ΄) β πΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphsca.f | . . . . . 6 β’ πΉ = (Scalarβπ) | |
2 | cphsca.k | . . . . . 6 β’ πΎ = (BaseβπΉ) | |
3 | 1, 2 | cphsubrg 24929 | . . . . 5 β’ (π β βPreHil β πΎ β (SubRingββfld)) |
4 | cnfldbas 21149 | . . . . . 6 β’ β = (Baseββfld) | |
5 | 4 | subrgss 20463 | . . . . 5 β’ (πΎ β (SubRingββfld) β πΎ β β) |
6 | 3, 5 | syl 17 | . . . 4 β’ (π β βPreHil β πΎ β β) |
7 | 6 | sselda 3982 | . . 3 β’ ((π β βPreHil β§ π΄ β πΎ) β π΄ β β) |
8 | absval 15190 | . . 3 β’ (π΄ β β β (absβπ΄) = (ββ(π΄ Β· (ββπ΄)))) | |
9 | 7, 8 | syl 17 | . 2 β’ ((π β βPreHil β§ π΄ β πΎ) β (absβπ΄) = (ββ(π΄ Β· (ββπ΄)))) |
10 | simpl 482 | . . 3 β’ ((π β βPreHil β§ π΄ β πΎ) β π β βPreHil) | |
11 | 3 | adantr 480 | . . . 4 β’ ((π β βPreHil β§ π΄ β πΎ) β πΎ β (SubRingββfld)) |
12 | simpr 484 | . . . 4 β’ ((π β βPreHil β§ π΄ β πΎ) β π΄ β πΎ) | |
13 | 1, 2 | cphcjcl 24932 | . . . 4 β’ ((π β βPreHil β§ π΄ β πΎ) β (ββπ΄) β πΎ) |
14 | cnfldmul 21151 | . . . . 5 β’ Β· = (.rββfld) | |
15 | 14 | subrgmcl 20475 | . . . 4 β’ ((πΎ β (SubRingββfld) β§ π΄ β πΎ β§ (ββπ΄) β πΎ) β (π΄ Β· (ββπ΄)) β πΎ) |
16 | 11, 12, 13, 15 | syl3anc 1370 | . . 3 β’ ((π β βPreHil β§ π΄ β πΎ) β (π΄ Β· (ββπ΄)) β πΎ) |
17 | 7 | cjmulrcld 15158 | . . 3 β’ ((π β βPreHil β§ π΄ β πΎ) β (π΄ Β· (ββπ΄)) β β) |
18 | 7 | cjmulge0d 15160 | . . 3 β’ ((π β βPreHil β§ π΄ β πΎ) β 0 β€ (π΄ Β· (ββπ΄))) |
19 | 1, 2 | cphsqrtcl 24933 | . . 3 β’ ((π β βPreHil β§ ((π΄ Β· (ββπ΄)) β πΎ β§ (π΄ Β· (ββπ΄)) β β β§ 0 β€ (π΄ Β· (ββπ΄)))) β (ββ(π΄ Β· (ββπ΄))) β πΎ) |
20 | 10, 16, 17, 18, 19 | syl13anc 1371 | . 2 β’ ((π β βPreHil β§ π΄ β πΎ) β (ββ(π΄ Β· (ββπ΄))) β πΎ) |
21 | 9, 20 | eqeltrd 2832 | 1 β’ ((π β βPreHil β§ π΄ β πΎ) β (absβπ΄) β πΎ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wss 3948 class class class wbr 5148 βcfv 6543 (class class class)co 7412 βcc 11111 βcr 11112 0cc0 11113 Β· cmul 11118 β€ cle 11254 βccj 15048 βcsqrt 15185 abscabs 15186 Basecbs 17149 Scalarcsca 17205 SubRingcsubrg 20458 βfldccnfld 21145 βPreHilccph 24915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-addf 11192 ax-mulf 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-rp 12980 df-ico 13335 df-fz 13490 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-grp 18859 df-minusg 18860 df-subg 19040 df-ghm 19129 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-rhm 20364 df-subrng 20435 df-subrg 20460 df-drng 20503 df-staf 20597 df-srng 20598 df-lvec 20859 df-cnfld 21146 df-phl 21399 df-cph 24917 |
This theorem is referenced by: cphsqrtcl2 24935 |
Copyright terms: Public domain | W3C validator |