MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphabscl Structured version   Visualization version   GIF version

Theorem cphabscl 25204
Description: The scalar field of a subcomplex pre-Hilbert space is closed under the absolute value operation. (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f 𝐹 = (Scalar‘𝑊)
cphsca.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphabscl ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (abs‘𝐴) ∈ 𝐾)

Proof of Theorem cphabscl
StepHypRef Expression
1 cphsca.f . . . . . 6 𝐹 = (Scalar‘𝑊)
2 cphsca.k . . . . . 6 𝐾 = (Base‘𝐹)
31, 2cphsubrg 25199 . . . . 5 (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
4 cnfldbas 21347 . . . . . 6 ℂ = (Base‘ℂfld)
54subrgss 20556 . . . . 5 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
63, 5syl 17 . . . 4 (𝑊 ∈ ℂPreHil → 𝐾 ⊆ ℂ)
76sselda 3979 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → 𝐴 ∈ ℂ)
8 absval 15243 . . 3 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
97, 8syl 17 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
10 simpl 481 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → 𝑊 ∈ ℂPreHil)
113adantr 479 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → 𝐾 ∈ (SubRing‘ℂfld))
12 simpr 483 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → 𝐴𝐾)
131, 2cphcjcl 25202 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (∗‘𝐴) ∈ 𝐾)
14 cnfldmul 21351 . . . . 5 · = (.r‘ℂfld)
1514subrgmcl 20568 . . . 4 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐴𝐾 ∧ (∗‘𝐴) ∈ 𝐾) → (𝐴 · (∗‘𝐴)) ∈ 𝐾)
1611, 12, 13, 15syl3anc 1368 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (𝐴 · (∗‘𝐴)) ∈ 𝐾)
177cjmulrcld 15211 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (𝐴 · (∗‘𝐴)) ∈ ℝ)
187cjmulge0d 15213 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → 0 ≤ (𝐴 · (∗‘𝐴)))
191, 2cphsqrtcl 25203 . . 3 ((𝑊 ∈ ℂPreHil ∧ ((𝐴 · (∗‘𝐴)) ∈ 𝐾 ∧ (𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴)))) → (√‘(𝐴 · (∗‘𝐴))) ∈ 𝐾)
2010, 16, 17, 18, 19syl13anc 1369 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (√‘(𝐴 · (∗‘𝐴))) ∈ 𝐾)
219, 20eqeltrd 2826 1 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝐾) → (abs‘𝐴) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wss 3947   class class class wbr 5153  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158   · cmul 11163  cle 11299  ccj 15101  csqrt 15238  abscabs 15239  Basecbs 17213  Scalarcsca 17269  SubRingcsubrg 20551  fldccnfld 21343  ℂPreHilccph 25185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237  ax-mulf 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-rp 13029  df-ico 13384  df-fz 13539  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-grp 18931  df-minusg 18932  df-subg 19117  df-ghm 19207  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-cring 20219  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-rhm 20454  df-subrng 20528  df-subrg 20553  df-drng 20709  df-staf 20818  df-srng 20819  df-lvec 21081  df-cnfld 21344  df-phl 21622  df-cph 25187
This theorem is referenced by:  cphsqrtcl2  25205
  Copyright terms: Public domain W3C validator