| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcphcphlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for tcphcph 25137: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| tcphcph.v | ⊢ 𝑉 = (Base‘𝑊) |
| tcphcph.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| tcphcph.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
| tcphcph.2 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
| tcphcph.h | ⊢ , = (·𝑖‘𝑊) |
| tcphcph.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) |
| tcphcph.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
| tcphcph.k | ⊢ 𝐾 = (Base‘𝐹) |
| tcphcph.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| tcphcphlem2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| tcphcphlem2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| tcphcphlem2 | ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | . . . . . . 7 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 2 | tcphcph.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | tcphcph.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | tcphcph.1 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
| 5 | tcphcph.2 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) | |
| 6 | 1, 2, 3, 4, 5 | phclm 25132 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| 7 | tcphcph.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | 3, 7 | clmsscn 24979 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
| 9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ⊆ ℂ) |
| 10 | tcphcphlem2.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 11 | 9, 10 | sseldd 3947 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 12 | 11 | cjmulrcld 15172 | . . 3 ⊢ (𝜑 → (𝑋 · (∗‘𝑋)) ∈ ℝ) |
| 13 | 11 | cjmulge0d 15174 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑋 · (∗‘𝑋))) |
| 14 | tcphcphlem2.4 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 15 | tcphcph.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
| 16 | 1, 2, 3, 4, 5, 15 | tcphcphlem3 25133 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑉) → (𝑌 , 𝑌) ∈ ℝ) |
| 17 | 14, 16 | mpdan 687 | . . 3 ⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℝ) |
| 18 | oveq12 7396 | . . . . . 6 ⊢ ((𝑥 = 𝑌 ∧ 𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌)) | |
| 19 | 18 | anidms 566 | . . . . 5 ⊢ (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌)) |
| 20 | 19 | breq2d 5119 | . . . 4 ⊢ (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌))) |
| 21 | tcphcph.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) | |
| 22 | 21 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 0 ≤ (𝑥 , 𝑥)) |
| 23 | 20, 22, 14 | rspcdva 3589 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑌 , 𝑌)) |
| 24 | 12, 13, 17, 23 | sqrtmuld 15391 | . 2 ⊢ (𝜑 → (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌)))) |
| 25 | phllmod 21539 | . . . . . . 7 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 26 | 4, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 27 | tcphcph.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 28 | 2, 3, 27, 7 | lmodvscl 20784 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) ∈ 𝑉) |
| 29 | 26, 10, 14, 28 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑉) |
| 30 | eqid 2729 | . . . . . 6 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 31 | eqid 2729 | . . . . . 6 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
| 32 | 3, 15, 2, 7, 27, 30, 31 | ipassr 21555 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ ((𝑋 · 𝑌) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾)) → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
| 33 | 4, 29, 14, 10, 32 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
| 34 | 3 | clmmul 24975 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → · = (.r‘𝐹)) |
| 35 | 6, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → · = (.r‘𝐹)) |
| 36 | 35 | oveqd 7404 | . . . . . 6 ⊢ (𝜑 → (𝑋 · (𝑌 , 𝑌)) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
| 37 | 3, 15, 2, 7, 27, 30 | ipass 21554 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
| 38 | 4, 10, 14, 14, 37 | syl13anc 1374 | . . . . . 6 ⊢ (𝜑 → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
| 39 | 36, 38 | eqtr4d 2767 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝑌 , 𝑌)) = ((𝑋 · 𝑌) , 𝑌)) |
| 40 | 3 | clmcj 24976 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) |
| 41 | 6, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∗ = (*𝑟‘𝐹)) |
| 42 | 41 | fveq1d 6860 | . . . . 5 ⊢ (𝜑 → (∗‘𝑋) = ((*𝑟‘𝐹)‘𝑋)) |
| 43 | 35, 39, 42 | oveq123d 7408 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
| 44 | 17 | recnd 11202 | . . . . 5 ⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℂ) |
| 45 | 11 | cjcld 15162 | . . . . 5 ⊢ (𝜑 → (∗‘𝑋) ∈ ℂ) |
| 46 | 11, 44, 45 | mul32d 11384 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) |
| 47 | 33, 43, 46 | 3eqtr2d 2770 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) |
| 48 | 47 | fveq2d 6862 | . 2 ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))) |
| 49 | absval 15204 | . . . 4 ⊢ (𝑋 ∈ ℂ → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋)))) | |
| 50 | 11, 49 | syl 17 | . . 3 ⊢ (𝜑 → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋)))) |
| 51 | 50 | oveq1d 7402 | . 2 ⊢ (𝜑 → ((abs‘𝑋) · (√‘(𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌)))) |
| 52 | 24, 48, 51 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 · cmul 11073 ≤ cle 11209 ∗ccj 15062 √csqrt 15199 abscabs 15200 Basecbs 17179 ↾s cress 17200 .rcmulr 17221 *𝑟cstv 17222 Scalarcsca 17223 ·𝑠 cvsca 17224 ·𝑖cip 17225 LModclmod 20766 ℂfldccnfld 21264 PreHilcphl 21533 ℂModcclm 24962 toℂPreHilctcph 25067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-subg 19055 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-rhm 20381 df-subrg 20479 df-drng 20640 df-staf 20748 df-srng 20749 df-lmod 20768 df-lmhm 20929 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-cnfld 21265 df-phl 21535 df-clm 24963 |
| This theorem is referenced by: tcphcph 25137 |
| Copyright terms: Public domain | W3C validator |