| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcphcphlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for tcphcph 25144: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| tcphcph.v | ⊢ 𝑉 = (Base‘𝑊) |
| tcphcph.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| tcphcph.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
| tcphcph.2 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
| tcphcph.h | ⊢ , = (·𝑖‘𝑊) |
| tcphcph.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) |
| tcphcph.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
| tcphcph.k | ⊢ 𝐾 = (Base‘𝐹) |
| tcphcph.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| tcphcphlem2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| tcphcphlem2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| tcphcphlem2 | ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | . . . . . . 7 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 2 | tcphcph.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | tcphcph.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | tcphcph.1 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
| 5 | tcphcph.2 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) | |
| 6 | 1, 2, 3, 4, 5 | phclm 25139 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| 7 | tcphcph.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | 3, 7 | clmsscn 24986 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
| 9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ⊆ ℂ) |
| 10 | tcphcphlem2.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 11 | 9, 10 | sseldd 3950 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 12 | 11 | cjmulrcld 15179 | . . 3 ⊢ (𝜑 → (𝑋 · (∗‘𝑋)) ∈ ℝ) |
| 13 | 11 | cjmulge0d 15181 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑋 · (∗‘𝑋))) |
| 14 | tcphcphlem2.4 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 15 | tcphcph.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
| 16 | 1, 2, 3, 4, 5, 15 | tcphcphlem3 25140 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑉) → (𝑌 , 𝑌) ∈ ℝ) |
| 17 | 14, 16 | mpdan 687 | . . 3 ⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℝ) |
| 18 | oveq12 7399 | . . . . . 6 ⊢ ((𝑥 = 𝑌 ∧ 𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌)) | |
| 19 | 18 | anidms 566 | . . . . 5 ⊢ (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌)) |
| 20 | 19 | breq2d 5122 | . . . 4 ⊢ (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌))) |
| 21 | tcphcph.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) | |
| 22 | 21 | ralrimiva 3126 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 0 ≤ (𝑥 , 𝑥)) |
| 23 | 20, 22, 14 | rspcdva 3592 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑌 , 𝑌)) |
| 24 | 12, 13, 17, 23 | sqrtmuld 15398 | . 2 ⊢ (𝜑 → (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌)))) |
| 25 | phllmod 21546 | . . . . . . 7 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 26 | 4, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 27 | tcphcph.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 28 | 2, 3, 27, 7 | lmodvscl 20791 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) ∈ 𝑉) |
| 29 | 26, 10, 14, 28 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑉) |
| 30 | eqid 2730 | . . . . . 6 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 31 | eqid 2730 | . . . . . 6 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
| 32 | 3, 15, 2, 7, 27, 30, 31 | ipassr 21562 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ ((𝑋 · 𝑌) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾)) → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
| 33 | 4, 29, 14, 10, 32 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
| 34 | 3 | clmmul 24982 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → · = (.r‘𝐹)) |
| 35 | 6, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → · = (.r‘𝐹)) |
| 36 | 35 | oveqd 7407 | . . . . . 6 ⊢ (𝜑 → (𝑋 · (𝑌 , 𝑌)) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
| 37 | 3, 15, 2, 7, 27, 30 | ipass 21561 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
| 38 | 4, 10, 14, 14, 37 | syl13anc 1374 | . . . . . 6 ⊢ (𝜑 → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
| 39 | 36, 38 | eqtr4d 2768 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝑌 , 𝑌)) = ((𝑋 · 𝑌) , 𝑌)) |
| 40 | 3 | clmcj 24983 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) |
| 41 | 6, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∗ = (*𝑟‘𝐹)) |
| 42 | 41 | fveq1d 6863 | . . . . 5 ⊢ (𝜑 → (∗‘𝑋) = ((*𝑟‘𝐹)‘𝑋)) |
| 43 | 35, 39, 42 | oveq123d 7411 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
| 44 | 17 | recnd 11209 | . . . . 5 ⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℂ) |
| 45 | 11 | cjcld 15169 | . . . . 5 ⊢ (𝜑 → (∗‘𝑋) ∈ ℂ) |
| 46 | 11, 44, 45 | mul32d 11391 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) |
| 47 | 33, 43, 46 | 3eqtr2d 2771 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) |
| 48 | 47 | fveq2d 6865 | . 2 ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))) |
| 49 | absval 15211 | . . . 4 ⊢ (𝑋 ∈ ℂ → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋)))) | |
| 50 | 11, 49 | syl 17 | . . 3 ⊢ (𝜑 → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋)))) |
| 51 | 50 | oveq1d 7405 | . 2 ⊢ (𝜑 → ((abs‘𝑋) · (√‘(𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌)))) |
| 52 | 24, 48, 51 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 · cmul 11080 ≤ cle 11216 ∗ccj 15069 √csqrt 15206 abscabs 15207 Basecbs 17186 ↾s cress 17207 .rcmulr 17228 *𝑟cstv 17229 Scalarcsca 17230 ·𝑠 cvsca 17231 ·𝑖cip 17232 LModclmod 20773 ℂfldccnfld 21271 PreHilcphl 21540 ℂModcclm 24969 toℂPreHilctcph 25074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-minusg 18876 df-subg 19062 df-ghm 19152 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-rhm 20388 df-subrg 20486 df-drng 20647 df-staf 20755 df-srng 20756 df-lmod 20775 df-lmhm 20936 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-cnfld 21272 df-phl 21542 df-clm 24970 |
| This theorem is referenced by: tcphcph 25144 |
| Copyright terms: Public domain | W3C validator |