MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphcphlem2 Structured version   Visualization version   GIF version

Theorem tcphcphlem2 23838
Description: Lemma for tcphcph 23839: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tcphcph.k 𝐾 = (Base‘𝐹)
tcphcph.s · = ( ·𝑠𝑊)
tcphcphlem2.3 (𝜑𝑋𝐾)
tcphcphlem2.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
tcphcphlem2 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌))))
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊   𝑥, ·   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tcphcphlem2
StepHypRef Expression
1 tcphval.n . . . . . . 7 𝐺 = (toℂPreHil‘𝑊)
2 tcphcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
3 tcphcph.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
4 tcphcph.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
5 tcphcph.2 . . . . . . 7 (𝜑𝐹 = (ℂflds 𝐾))
61, 2, 3, 4, 5phclm 23834 . . . . . 6 (𝜑𝑊 ∈ ℂMod)
7 tcphcph.k . . . . . . 7 𝐾 = (Base‘𝐹)
83, 7clmsscn 23682 . . . . . 6 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
96, 8syl 17 . . . . 5 (𝜑𝐾 ⊆ ℂ)
10 tcphcphlem2.3 . . . . 5 (𝜑𝑋𝐾)
119, 10sseldd 3954 . . . 4 (𝜑𝑋 ∈ ℂ)
1211cjmulrcld 14563 . . 3 (𝜑 → (𝑋 · (∗‘𝑋)) ∈ ℝ)
1311cjmulge0d 14565 . . 3 (𝜑 → 0 ≤ (𝑋 · (∗‘𝑋)))
14 tcphcphlem2.4 . . . 4 (𝜑𝑌𝑉)
15 tcphcph.h . . . . 5 , = (·𝑖𝑊)
161, 2, 3, 4, 5, 15tcphcphlem3 23835 . . . 4 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
1714, 16mpdan 686 . . 3 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
18 oveq12 7155 . . . . . 6 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
1918anidms 570 . . . . 5 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
2019breq2d 5065 . . . 4 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
21 tcphcph.4 . . . . 5 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
2221ralrimiva 3177 . . . 4 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
2320, 22, 14rspcdva 3611 . . 3 (𝜑 → 0 ≤ (𝑌 , 𝑌))
2412, 13, 17, 23sqrtmuld 14782 . 2 (𝜑 → (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌))))
25 phllmod 20769 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
264, 25syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
27 tcphcph.s . . . . . . 7 · = ( ·𝑠𝑊)
282, 3, 27, 7lmodvscl 19646 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝑉) → (𝑋 · 𝑌) ∈ 𝑉)
2926, 10, 14, 28syl3anc 1368 . . . . 5 (𝜑 → (𝑋 · 𝑌) ∈ 𝑉)
30 eqid 2824 . . . . . 6 (.r𝐹) = (.r𝐹)
31 eqid 2824 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
323, 15, 2, 7, 27, 30, 31ipassr 20785 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝑋 · 𝑌) ∈ 𝑉𝑌𝑉𝑋𝐾)) → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
334, 29, 14, 10, 32syl13anc 1369 . . . 4 (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
343clmmul 23678 . . . . . 6 (𝑊 ∈ ℂMod → · = (.r𝐹))
356, 34syl 17 . . . . 5 (𝜑 → · = (.r𝐹))
3635oveqd 7163 . . . . . 6 (𝜑 → (𝑋 · (𝑌 , 𝑌)) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
373, 15, 2, 7, 27, 30ipass 20784 . . . . . . 7 ((𝑊 ∈ PreHil ∧ (𝑋𝐾𝑌𝑉𝑌𝑉)) → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
384, 10, 14, 14, 37syl13anc 1369 . . . . . 6 (𝜑 → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
3936, 38eqtr4d 2862 . . . . 5 (𝜑 → (𝑋 · (𝑌 , 𝑌)) = ((𝑋 · 𝑌) , 𝑌))
403clmcj 23679 . . . . . . 7 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
416, 40syl 17 . . . . . 6 (𝜑 → ∗ = (*𝑟𝐹))
4241fveq1d 6661 . . . . 5 (𝜑 → (∗‘𝑋) = ((*𝑟𝐹)‘𝑋))
4335, 39, 42oveq123d 7167 . . . 4 (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
4417recnd 10663 . . . . 5 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
4511cjcld 14553 . . . . 5 (𝜑 → (∗‘𝑋) ∈ ℂ)
4611, 44, 45mul32d 10844 . . . 4 (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))
4733, 43, 463eqtr2d 2865 . . 3 (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))
4847fveq2d 6663 . 2 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))))
49 absval 14595 . . . 4 (𝑋 ∈ ℂ → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋))))
5011, 49syl 17 . . 3 (𝜑 → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋))))
5150oveq1d 7161 . 2 (𝜑 → ((abs‘𝑋) · (√‘(𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌))))
5224, 48, 513eqtr4d 2869 1 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wss 3919   class class class wbr 5053  cfv 6344  (class class class)co 7146  cc 10529  cr 10530  0cc0 10531   · cmul 10536  cle 10670  ccj 14453  csqrt 14590  abscabs 14591  Basecbs 16481  s cress 16482  .rcmulr 16564  *𝑟cstv 16565  Scalarcsca 16566   ·𝑠 cvsca 16567  ·𝑖cip 16568  LModclmod 19629  fldccnfld 20540  PreHilcphl 20763  ℂModcclm 23665  toℂPreHilctcph 23770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8899  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-dec 12094  df-uz 12239  df-rp 12385  df-fz 12893  df-seq 13372  df-exp 13433  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593  df-struct 16483  df-ndx 16484  df-slot 16485  df-base 16487  df-sets 16488  df-ress 16489  df-plusg 16576  df-mulr 16577  df-starv 16578  df-sca 16579  df-vsca 16580  df-ip 16581  df-tset 16582  df-ple 16583  df-ds 16585  df-unif 16586  df-0g 16713  df-mgm 17850  df-sgrp 17899  df-mnd 17910  df-mhm 17954  df-grp 18104  df-subg 18274  df-ghm 18354  df-cmn 18906  df-mgp 19238  df-ur 19250  df-ring 19297  df-cring 19298  df-oppr 19371  df-dvdsr 19389  df-unit 19390  df-rnghom 19465  df-drng 19499  df-subrg 19528  df-staf 19611  df-srng 19612  df-lmod 19631  df-lmhm 19789  df-lvec 19870  df-sra 19939  df-rgmod 19940  df-cnfld 20541  df-phl 20765  df-clm 23666
This theorem is referenced by:  tcphcph  23839
  Copyright terms: Public domain W3C validator