![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tcphcphlem2 | Structured version Visualization version GIF version |
Description: Lemma for tcphcph 25256: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
tcphcph.v | ⊢ 𝑉 = (Base‘𝑊) |
tcphcph.f | ⊢ 𝐹 = (Scalar‘𝑊) |
tcphcph.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
tcphcph.2 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
tcphcph.h | ⊢ , = (·𝑖‘𝑊) |
tcphcph.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) |
tcphcph.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
tcphcph.k | ⊢ 𝐾 = (Base‘𝐹) |
tcphcph.s | ⊢ · = ( ·𝑠 ‘𝑊) |
tcphcphlem2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
tcphcphlem2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
tcphcphlem2 | ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcphval.n | . . . . . . 7 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
2 | tcphcph.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
3 | tcphcph.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | tcphcph.1 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
5 | tcphcph.2 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) | |
6 | 1, 2, 3, 4, 5 | phclm 25251 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
7 | tcphcph.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
8 | 3, 7 | clmsscn 25097 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ⊆ ℂ) |
10 | tcphcphlem2.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
11 | 9, 10 | sseldd 3980 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
12 | 11 | cjmulrcld 15211 | . . 3 ⊢ (𝜑 → (𝑋 · (∗‘𝑋)) ∈ ℝ) |
13 | 11 | cjmulge0d 15213 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑋 · (∗‘𝑋))) |
14 | tcphcphlem2.4 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
15 | tcphcph.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
16 | 1, 2, 3, 4, 5, 15 | tcphcphlem3 25252 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑉) → (𝑌 , 𝑌) ∈ ℝ) |
17 | 14, 16 | mpdan 685 | . . 3 ⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℝ) |
18 | oveq12 7433 | . . . . . 6 ⊢ ((𝑥 = 𝑌 ∧ 𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌)) | |
19 | 18 | anidms 565 | . . . . 5 ⊢ (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌)) |
20 | 19 | breq2d 5165 | . . . 4 ⊢ (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌))) |
21 | tcphcph.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) | |
22 | 21 | ralrimiva 3136 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 0 ≤ (𝑥 , 𝑥)) |
23 | 20, 22, 14 | rspcdva 3609 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑌 , 𝑌)) |
24 | 12, 13, 17, 23 | sqrtmuld 15429 | . 2 ⊢ (𝜑 → (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌)))) |
25 | phllmod 21626 | . . . . . . 7 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
26 | 4, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
27 | tcphcph.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
28 | 2, 3, 27, 7 | lmodvscl 20854 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) ∈ 𝑉) |
29 | 26, 10, 14, 28 | syl3anc 1368 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑉) |
30 | eqid 2726 | . . . . . 6 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
31 | eqid 2726 | . . . . . 6 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
32 | 3, 15, 2, 7, 27, 30, 31 | ipassr 21642 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ ((𝑋 · 𝑌) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾)) → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
33 | 4, 29, 14, 10, 32 | syl13anc 1369 | . . . 4 ⊢ (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
34 | 3 | clmmul 25093 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → · = (.r‘𝐹)) |
35 | 6, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → · = (.r‘𝐹)) |
36 | 35 | oveqd 7441 | . . . . . 6 ⊢ (𝜑 → (𝑋 · (𝑌 , 𝑌)) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
37 | 3, 15, 2, 7, 27, 30 | ipass 21641 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
38 | 4, 10, 14, 14, 37 | syl13anc 1369 | . . . . . 6 ⊢ (𝜑 → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
39 | 36, 38 | eqtr4d 2769 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝑌 , 𝑌)) = ((𝑋 · 𝑌) , 𝑌)) |
40 | 3 | clmcj 25094 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) |
41 | 6, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∗ = (*𝑟‘𝐹)) |
42 | 41 | fveq1d 6903 | . . . . 5 ⊢ (𝜑 → (∗‘𝑋) = ((*𝑟‘𝐹)‘𝑋)) |
43 | 35, 39, 42 | oveq123d 7445 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
44 | 17 | recnd 11292 | . . . . 5 ⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℂ) |
45 | 11 | cjcld 15201 | . . . . 5 ⊢ (𝜑 → (∗‘𝑋) ∈ ℂ) |
46 | 11, 44, 45 | mul32d 11474 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) |
47 | 33, 43, 46 | 3eqtr2d 2772 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) |
48 | 47 | fveq2d 6905 | . 2 ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))) |
49 | absval 15243 | . . . 4 ⊢ (𝑋 ∈ ℂ → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋)))) | |
50 | 11, 49 | syl 17 | . . 3 ⊢ (𝜑 → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋)))) |
51 | 50 | oveq1d 7439 | . 2 ⊢ (𝜑 → ((abs‘𝑋) · (√‘(𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌)))) |
52 | 24, 48, 51 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 ℂcc 11156 ℝcr 11157 0cc0 11158 · cmul 11163 ≤ cle 11299 ∗ccj 15101 √csqrt 15238 abscabs 15239 Basecbs 17213 ↾s cress 17242 .rcmulr 17267 *𝑟cstv 17268 Scalarcsca 17269 ·𝑠 cvsca 17270 ·𝑖cip 17271 LModclmod 20836 ℂfldccnfld 21343 PreHilcphl 21620 ℂModcclm 25080 toℂPreHilctcph 25186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 ax-mulf 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-tpos 8241 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-rp 13029 df-fz 13539 df-seq 14022 df-exp 14082 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-mhm 18773 df-grp 18931 df-minusg 18932 df-subg 19117 df-ghm 19207 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-cring 20219 df-oppr 20316 df-dvdsr 20339 df-unit 20340 df-rhm 20454 df-subrg 20553 df-drng 20709 df-staf 20818 df-srng 20819 df-lmod 20838 df-lmhm 21000 df-lvec 21081 df-sra 21151 df-rgmod 21152 df-cnfld 21344 df-phl 21622 df-clm 25081 |
This theorem is referenced by: tcphcph 25256 |
Copyright terms: Public domain | W3C validator |