| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tcphcphlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for tcphcph 25162: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| Ref | Expression |
|---|---|
| tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
| tcphcph.v | ⊢ 𝑉 = (Base‘𝑊) |
| tcphcph.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| tcphcph.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
| tcphcph.2 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
| tcphcph.h | ⊢ , = (·𝑖‘𝑊) |
| tcphcph.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) |
| tcphcph.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
| tcphcph.k | ⊢ 𝐾 = (Base‘𝐹) |
| tcphcph.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| tcphcphlem2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| tcphcphlem2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| tcphcphlem2 | ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | . . . . . . 7 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
| 2 | tcphcph.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | tcphcph.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | tcphcph.1 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
| 5 | tcphcph.2 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) | |
| 6 | 1, 2, 3, 4, 5 | phclm 25157 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| 7 | tcphcph.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | 3, 7 | clmsscn 25004 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
| 9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ⊆ ℂ) |
| 10 | tcphcphlem2.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 11 | 9, 10 | sseldd 3935 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 12 | 11 | cjmulrcld 15110 | . . 3 ⊢ (𝜑 → (𝑋 · (∗‘𝑋)) ∈ ℝ) |
| 13 | 11 | cjmulge0d 15112 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑋 · (∗‘𝑋))) |
| 14 | tcphcphlem2.4 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 15 | tcphcph.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
| 16 | 1, 2, 3, 4, 5, 15 | tcphcphlem3 25158 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑉) → (𝑌 , 𝑌) ∈ ℝ) |
| 17 | 14, 16 | mpdan 687 | . . 3 ⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℝ) |
| 18 | oveq12 7355 | . . . . . 6 ⊢ ((𝑥 = 𝑌 ∧ 𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌)) | |
| 19 | 18 | anidms 566 | . . . . 5 ⊢ (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌)) |
| 20 | 19 | breq2d 5103 | . . . 4 ⊢ (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌))) |
| 21 | tcphcph.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) | |
| 22 | 21 | ralrimiva 3124 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 0 ≤ (𝑥 , 𝑥)) |
| 23 | 20, 22, 14 | rspcdva 3578 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑌 , 𝑌)) |
| 24 | 12, 13, 17, 23 | sqrtmuld 15329 | . 2 ⊢ (𝜑 → (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌)))) |
| 25 | phllmod 21565 | . . . . . . 7 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 26 | 4, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 27 | tcphcph.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 28 | 2, 3, 27, 7 | lmodvscl 20809 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) ∈ 𝑉) |
| 29 | 26, 10, 14, 28 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑉) |
| 30 | eqid 2731 | . . . . . 6 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 31 | eqid 2731 | . . . . . 6 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
| 32 | 3, 15, 2, 7, 27, 30, 31 | ipassr 21581 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ ((𝑋 · 𝑌) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾)) → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
| 33 | 4, 29, 14, 10, 32 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
| 34 | 3 | clmmul 25000 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → · = (.r‘𝐹)) |
| 35 | 6, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → · = (.r‘𝐹)) |
| 36 | 35 | oveqd 7363 | . . . . . 6 ⊢ (𝜑 → (𝑋 · (𝑌 , 𝑌)) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
| 37 | 3, 15, 2, 7, 27, 30 | ipass 21580 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
| 38 | 4, 10, 14, 14, 37 | syl13anc 1374 | . . . . . 6 ⊢ (𝜑 → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
| 39 | 36, 38 | eqtr4d 2769 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝑌 , 𝑌)) = ((𝑋 · 𝑌) , 𝑌)) |
| 40 | 3 | clmcj 25001 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) |
| 41 | 6, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∗ = (*𝑟‘𝐹)) |
| 42 | 41 | fveq1d 6824 | . . . . 5 ⊢ (𝜑 → (∗‘𝑋) = ((*𝑟‘𝐹)‘𝑋)) |
| 43 | 35, 39, 42 | oveq123d 7367 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
| 44 | 17 | recnd 11137 | . . . . 5 ⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℂ) |
| 45 | 11 | cjcld 15100 | . . . . 5 ⊢ (𝜑 → (∗‘𝑋) ∈ ℂ) |
| 46 | 11, 44, 45 | mul32d 11320 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) |
| 47 | 33, 43, 46 | 3eqtr2d 2772 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) |
| 48 | 47 | fveq2d 6826 | . 2 ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))) |
| 49 | absval 15142 | . . . 4 ⊢ (𝑋 ∈ ℂ → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋)))) | |
| 50 | 11, 49 | syl 17 | . . 3 ⊢ (𝜑 → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋)))) |
| 51 | 50 | oveq1d 7361 | . 2 ⊢ (𝜑 → ((abs‘𝑋) · (√‘(𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌)))) |
| 52 | 24, 48, 51 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 · cmul 11008 ≤ cle 11144 ∗ccj 15000 √csqrt 15137 abscabs 15138 Basecbs 17117 ↾s cress 17138 .rcmulr 17159 *𝑟cstv 17160 Scalarcsca 17161 ·𝑠 cvsca 17162 ·𝑖cip 17163 LModclmod 20791 ℂfldccnfld 21289 PreHilcphl 21559 ℂModcclm 24987 toℂPreHilctcph 25092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-rp 12888 df-fz 13405 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-grp 18846 df-minusg 18847 df-subg 19033 df-ghm 19123 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-rhm 20388 df-subrg 20483 df-drng 20644 df-staf 20752 df-srng 20753 df-lmod 20793 df-lmhm 20954 df-lvec 21035 df-sra 21105 df-rgmod 21106 df-cnfld 21290 df-phl 21561 df-clm 24988 |
| This theorem is referenced by: tcphcph 25162 |
| Copyright terms: Public domain | W3C validator |