MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphcphlem2 Structured version   Visualization version   GIF version

Theorem tcphcphlem2 25188
Description: Lemma for tcphcph 25189: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tcphcph.k 𝐾 = (Base‘𝐹)
tcphcph.s · = ( ·𝑠𝑊)
tcphcphlem2.3 (𝜑𝑋𝐾)
tcphcphlem2.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
tcphcphlem2 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌))))
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊   𝑥, ·   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tcphcphlem2
StepHypRef Expression
1 tcphval.n . . . . . . 7 𝐺 = (toℂPreHil‘𝑊)
2 tcphcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
3 tcphcph.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
4 tcphcph.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
5 tcphcph.2 . . . . . . 7 (𝜑𝐹 = (ℂflds 𝐾))
61, 2, 3, 4, 5phclm 25184 . . . . . 6 (𝜑𝑊 ∈ ℂMod)
7 tcphcph.k . . . . . . 7 𝐾 = (Base‘𝐹)
83, 7clmsscn 25030 . . . . . 6 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
96, 8syl 17 . . . . 5 (𝜑𝐾 ⊆ ℂ)
10 tcphcphlem2.3 . . . . 5 (𝜑𝑋𝐾)
119, 10sseldd 3959 . . . 4 (𝜑𝑋 ∈ ℂ)
1211cjmulrcld 15225 . . 3 (𝜑 → (𝑋 · (∗‘𝑋)) ∈ ℝ)
1311cjmulge0d 15227 . . 3 (𝜑 → 0 ≤ (𝑋 · (∗‘𝑋)))
14 tcphcphlem2.4 . . . 4 (𝜑𝑌𝑉)
15 tcphcph.h . . . . 5 , = (·𝑖𝑊)
161, 2, 3, 4, 5, 15tcphcphlem3 25185 . . . 4 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
1714, 16mpdan 687 . . 3 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
18 oveq12 7414 . . . . . 6 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
1918anidms 566 . . . . 5 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
2019breq2d 5131 . . . 4 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
21 tcphcph.4 . . . . 5 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
2221ralrimiva 3132 . . . 4 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
2320, 22, 14rspcdva 3602 . . 3 (𝜑 → 0 ≤ (𝑌 , 𝑌))
2412, 13, 17, 23sqrtmuld 15443 . 2 (𝜑 → (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌))))
25 phllmod 21590 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
264, 25syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
27 tcphcph.s . . . . . . 7 · = ( ·𝑠𝑊)
282, 3, 27, 7lmodvscl 20835 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝑉) → (𝑋 · 𝑌) ∈ 𝑉)
2926, 10, 14, 28syl3anc 1373 . . . . 5 (𝜑 → (𝑋 · 𝑌) ∈ 𝑉)
30 eqid 2735 . . . . . 6 (.r𝐹) = (.r𝐹)
31 eqid 2735 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
323, 15, 2, 7, 27, 30, 31ipassr 21606 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝑋 · 𝑌) ∈ 𝑉𝑌𝑉𝑋𝐾)) → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
334, 29, 14, 10, 32syl13anc 1374 . . . 4 (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
343clmmul 25026 . . . . . 6 (𝑊 ∈ ℂMod → · = (.r𝐹))
356, 34syl 17 . . . . 5 (𝜑 → · = (.r𝐹))
3635oveqd 7422 . . . . . 6 (𝜑 → (𝑋 · (𝑌 , 𝑌)) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
373, 15, 2, 7, 27, 30ipass 21605 . . . . . . 7 ((𝑊 ∈ PreHil ∧ (𝑋𝐾𝑌𝑉𝑌𝑉)) → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
384, 10, 14, 14, 37syl13anc 1374 . . . . . 6 (𝜑 → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
3936, 38eqtr4d 2773 . . . . 5 (𝜑 → (𝑋 · (𝑌 , 𝑌)) = ((𝑋 · 𝑌) , 𝑌))
403clmcj 25027 . . . . . . 7 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
416, 40syl 17 . . . . . 6 (𝜑 → ∗ = (*𝑟𝐹))
4241fveq1d 6878 . . . . 5 (𝜑 → (∗‘𝑋) = ((*𝑟𝐹)‘𝑋))
4335, 39, 42oveq123d 7426 . . . 4 (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
4417recnd 11263 . . . . 5 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
4511cjcld 15215 . . . . 5 (𝜑 → (∗‘𝑋) ∈ ℂ)
4611, 44, 45mul32d 11445 . . . 4 (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))
4733, 43, 463eqtr2d 2776 . . 3 (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))
4847fveq2d 6880 . 2 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))))
49 absval 15257 . . . 4 (𝑋 ∈ ℂ → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋))))
5011, 49syl 17 . . 3 (𝜑 → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋))))
5150oveq1d 7420 . 2 (𝜑 → ((abs‘𝑋) · (√‘(𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌))))
5224, 48, 513eqtr4d 2780 1 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wss 3926   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129   · cmul 11134  cle 11270  ccj 15115  csqrt 15252  abscabs 15253  Basecbs 17228  s cress 17251  .rcmulr 17272  *𝑟cstv 17273  Scalarcsca 17274   ·𝑠 cvsca 17275  ·𝑖cip 17276  LModclmod 20817  fldccnfld 21315  PreHilcphl 21584  ℂModcclm 25013  toℂPreHilctcph 25119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-subg 19106  df-ghm 19196  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-rhm 20432  df-subrg 20530  df-drng 20691  df-staf 20799  df-srng 20800  df-lmod 20819  df-lmhm 20980  df-lvec 21061  df-sra 21131  df-rgmod 21132  df-cnfld 21316  df-phl 21586  df-clm 25014
This theorem is referenced by:  tcphcph  25189
  Copyright terms: Public domain W3C validator