![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tcphcphlem2 | Structured version Visualization version GIF version |
Description: Lemma for tcphcph 25285: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
tcphval.n | ⊢ 𝐺 = (toℂPreHil‘𝑊) |
tcphcph.v | ⊢ 𝑉 = (Base‘𝑊) |
tcphcph.f | ⊢ 𝐹 = (Scalar‘𝑊) |
tcphcph.1 | ⊢ (𝜑 → 𝑊 ∈ PreHil) |
tcphcph.2 | ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) |
tcphcph.h | ⊢ , = (·𝑖‘𝑊) |
tcphcph.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾) |
tcphcph.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) |
tcphcph.k | ⊢ 𝐾 = (Base‘𝐹) |
tcphcph.s | ⊢ · = ( ·𝑠 ‘𝑊) |
tcphcphlem2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
tcphcphlem2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
tcphcphlem2 | ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tcphval.n | . . . . . . 7 ⊢ 𝐺 = (toℂPreHil‘𝑊) | |
2 | tcphcph.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
3 | tcphcph.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | tcphcph.1 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ PreHil) | |
5 | tcphcph.2 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (ℂfld ↾s 𝐾)) | |
6 | 1, 2, 3, 4, 5 | phclm 25280 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
7 | tcphcph.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
8 | 3, 7 | clmsscn 25126 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ⊆ ℂ) |
10 | tcphcphlem2.3 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
11 | 9, 10 | sseldd 3996 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
12 | 11 | cjmulrcld 15242 | . . 3 ⊢ (𝜑 → (𝑋 · (∗‘𝑋)) ∈ ℝ) |
13 | 11 | cjmulge0d 15244 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑋 · (∗‘𝑋))) |
14 | tcphcphlem2.4 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
15 | tcphcph.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
16 | 1, 2, 3, 4, 5, 15 | tcphcphlem3 25281 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑉) → (𝑌 , 𝑌) ∈ ℝ) |
17 | 14, 16 | mpdan 687 | . . 3 ⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℝ) |
18 | oveq12 7440 | . . . . . 6 ⊢ ((𝑥 = 𝑌 ∧ 𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌)) | |
19 | 18 | anidms 566 | . . . . 5 ⊢ (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌)) |
20 | 19 | breq2d 5160 | . . . 4 ⊢ (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌))) |
21 | tcphcph.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 0 ≤ (𝑥 , 𝑥)) | |
22 | 21 | ralrimiva 3144 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 0 ≤ (𝑥 , 𝑥)) |
23 | 20, 22, 14 | rspcdva 3623 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑌 , 𝑌)) |
24 | 12, 13, 17, 23 | sqrtmuld 15460 | . 2 ⊢ (𝜑 → (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌)))) |
25 | phllmod 21666 | . . . . . . 7 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
26 | 4, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
27 | tcphcph.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
28 | 2, 3, 27, 7 | lmodvscl 20893 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) ∈ 𝑉) |
29 | 26, 10, 14, 28 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑉) |
30 | eqid 2735 | . . . . . 6 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
31 | eqid 2735 | . . . . . 6 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
32 | 3, 15, 2, 7, 27, 30, 31 | ipassr 21682 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ ((𝑋 · 𝑌) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾)) → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
33 | 4, 29, 14, 10, 32 | syl13anc 1371 | . . . 4 ⊢ (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
34 | 3 | clmmul 25122 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → · = (.r‘𝐹)) |
35 | 6, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → · = (.r‘𝐹)) |
36 | 35 | oveqd 7448 | . . . . . 6 ⊢ (𝜑 → (𝑋 · (𝑌 , 𝑌)) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
37 | 3, 15, 2, 7, 27, 30 | ipass 21681 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
38 | 4, 10, 14, 14, 37 | syl13anc 1371 | . . . . . 6 ⊢ (𝜑 → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r‘𝐹)(𝑌 , 𝑌))) |
39 | 36, 38 | eqtr4d 2778 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝑌 , 𝑌)) = ((𝑋 · 𝑌) , 𝑌)) |
40 | 3 | clmcj 25123 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) |
41 | 6, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∗ = (*𝑟‘𝐹)) |
42 | 41 | fveq1d 6909 | . . . . 5 ⊢ (𝜑 → (∗‘𝑋) = ((*𝑟‘𝐹)‘𝑋)) |
43 | 35, 39, 42 | oveq123d 7452 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = (((𝑋 · 𝑌) , 𝑌)(.r‘𝐹)((*𝑟‘𝐹)‘𝑋))) |
44 | 17 | recnd 11287 | . . . . 5 ⊢ (𝜑 → (𝑌 , 𝑌) ∈ ℂ) |
45 | 11 | cjcld 15232 | . . . . 5 ⊢ (𝜑 → (∗‘𝑋) ∈ ℂ) |
46 | 11, 44, 45 | mul32d 11469 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) |
47 | 33, 43, 46 | 3eqtr2d 2781 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) |
48 | 47 | fveq2d 6911 | . 2 ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))) |
49 | absval 15274 | . . . 4 ⊢ (𝑋 ∈ ℂ → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋)))) | |
50 | 11, 49 | syl 17 | . . 3 ⊢ (𝜑 → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋)))) |
51 | 50 | oveq1d 7446 | . 2 ⊢ (𝜑 → ((abs‘𝑋) · (√‘(𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌)))) |
52 | 24, 48, 51 | 3eqtr4d 2785 | 1 ⊢ (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 · cmul 11158 ≤ cle 11294 ∗ccj 15132 √csqrt 15269 abscabs 15270 Basecbs 17245 ↾s cress 17274 .rcmulr 17299 *𝑟cstv 17300 Scalarcsca 17301 ·𝑠 cvsca 17302 ·𝑖cip 17303 LModclmod 20875 ℂfldccnfld 21382 PreHilcphl 21660 ℂModcclm 25109 toℂPreHilctcph 25215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-grp 18967 df-minusg 18968 df-subg 19154 df-ghm 19244 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-rhm 20489 df-subrg 20587 df-drng 20748 df-staf 20857 df-srng 20858 df-lmod 20877 df-lmhm 21039 df-lvec 21120 df-sra 21190 df-rgmod 21191 df-cnfld 21383 df-phl 21662 df-clm 25110 |
This theorem is referenced by: tcphcph 25285 |
Copyright terms: Public domain | W3C validator |