MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphcphlem2 Structured version   Visualization version   GIF version

Theorem tcphcphlem2 25136
Description: Lemma for tcphcph 25137: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tcphcph.k 𝐾 = (Base‘𝐹)
tcphcph.s · = ( ·𝑠𝑊)
tcphcphlem2.3 (𝜑𝑋𝐾)
tcphcphlem2.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
tcphcphlem2 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌))))
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊   𝑥, ·   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tcphcphlem2
StepHypRef Expression
1 tcphval.n . . . . . . 7 𝐺 = (toℂPreHil‘𝑊)
2 tcphcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
3 tcphcph.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
4 tcphcph.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
5 tcphcph.2 . . . . . . 7 (𝜑𝐹 = (ℂflds 𝐾))
61, 2, 3, 4, 5phclm 25132 . . . . . 6 (𝜑𝑊 ∈ ℂMod)
7 tcphcph.k . . . . . . 7 𝐾 = (Base‘𝐹)
83, 7clmsscn 24979 . . . . . 6 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
96, 8syl 17 . . . . 5 (𝜑𝐾 ⊆ ℂ)
10 tcphcphlem2.3 . . . . 5 (𝜑𝑋𝐾)
119, 10sseldd 3947 . . . 4 (𝜑𝑋 ∈ ℂ)
1211cjmulrcld 15172 . . 3 (𝜑 → (𝑋 · (∗‘𝑋)) ∈ ℝ)
1311cjmulge0d 15174 . . 3 (𝜑 → 0 ≤ (𝑋 · (∗‘𝑋)))
14 tcphcphlem2.4 . . . 4 (𝜑𝑌𝑉)
15 tcphcph.h . . . . 5 , = (·𝑖𝑊)
161, 2, 3, 4, 5, 15tcphcphlem3 25133 . . . 4 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
1714, 16mpdan 687 . . 3 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
18 oveq12 7396 . . . . . 6 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
1918anidms 566 . . . . 5 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
2019breq2d 5119 . . . 4 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
21 tcphcph.4 . . . . 5 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
2221ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
2320, 22, 14rspcdva 3589 . . 3 (𝜑 → 0 ≤ (𝑌 , 𝑌))
2412, 13, 17, 23sqrtmuld 15391 . 2 (𝜑 → (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌))))
25 phllmod 21539 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
264, 25syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
27 tcphcph.s . . . . . . 7 · = ( ·𝑠𝑊)
282, 3, 27, 7lmodvscl 20784 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝑉) → (𝑋 · 𝑌) ∈ 𝑉)
2926, 10, 14, 28syl3anc 1373 . . . . 5 (𝜑 → (𝑋 · 𝑌) ∈ 𝑉)
30 eqid 2729 . . . . . 6 (.r𝐹) = (.r𝐹)
31 eqid 2729 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
323, 15, 2, 7, 27, 30, 31ipassr 21555 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝑋 · 𝑌) ∈ 𝑉𝑌𝑉𝑋𝐾)) → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
334, 29, 14, 10, 32syl13anc 1374 . . . 4 (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
343clmmul 24975 . . . . . 6 (𝑊 ∈ ℂMod → · = (.r𝐹))
356, 34syl 17 . . . . 5 (𝜑 → · = (.r𝐹))
3635oveqd 7404 . . . . . 6 (𝜑 → (𝑋 · (𝑌 , 𝑌)) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
373, 15, 2, 7, 27, 30ipass 21554 . . . . . . 7 ((𝑊 ∈ PreHil ∧ (𝑋𝐾𝑌𝑉𝑌𝑉)) → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
384, 10, 14, 14, 37syl13anc 1374 . . . . . 6 (𝜑 → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
3936, 38eqtr4d 2767 . . . . 5 (𝜑 → (𝑋 · (𝑌 , 𝑌)) = ((𝑋 · 𝑌) , 𝑌))
403clmcj 24976 . . . . . . 7 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
416, 40syl 17 . . . . . 6 (𝜑 → ∗ = (*𝑟𝐹))
4241fveq1d 6860 . . . . 5 (𝜑 → (∗‘𝑋) = ((*𝑟𝐹)‘𝑋))
4335, 39, 42oveq123d 7408 . . . 4 (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
4417recnd 11202 . . . . 5 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
4511cjcld 15162 . . . . 5 (𝜑 → (∗‘𝑋) ∈ ℂ)
4611, 44, 45mul32d 11384 . . . 4 (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))
4733, 43, 463eqtr2d 2770 . . 3 (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))
4847fveq2d 6862 . 2 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))))
49 absval 15204 . . . 4 (𝑋 ∈ ℂ → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋))))
5011, 49syl 17 . . 3 (𝜑 → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋))))
5150oveq1d 7402 . 2 (𝜑 → ((abs‘𝑋) · (√‘(𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌))))
5224, 48, 513eqtr4d 2774 1 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   · cmul 11073  cle 11209  ccj 15062  csqrt 15199  abscabs 15200  Basecbs 17179  s cress 17200  .rcmulr 17221  *𝑟cstv 17222  Scalarcsca 17223   ·𝑠 cvsca 17224  ·𝑖cip 17225  LModclmod 20766  fldccnfld 21264  PreHilcphl 21533  ℂModcclm 24962  toℂPreHilctcph 25067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-subg 19055  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-rhm 20381  df-subrg 20479  df-drng 20640  df-staf 20748  df-srng 20749  df-lmod 20768  df-lmhm 20929  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-phl 21535  df-clm 24963
This theorem is referenced by:  tcphcph  25137
  Copyright terms: Public domain W3C validator