MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphcphlem2 Structured version   Visualization version   GIF version

Theorem tcphcphlem2 25270
Description: Lemma for tcphcph 25271: homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphcph.v 𝑉 = (Base‘𝑊)
tcphcph.f 𝐹 = (Scalar‘𝑊)
tcphcph.1 (𝜑𝑊 ∈ PreHil)
tcphcph.2 (𝜑𝐹 = (ℂflds 𝐾))
tcphcph.h , = (·𝑖𝑊)
tcphcph.3 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (√‘𝑥) ∈ 𝐾)
tcphcph.4 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
tcphcph.k 𝐾 = (Base‘𝐹)
tcphcph.s · = ( ·𝑠𝑊)
tcphcphlem2.3 (𝜑𝑋𝐾)
tcphcphlem2.4 (𝜑𝑌𝑉)
Assertion
Ref Expression
tcphcphlem2 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌))))
Distinct variable groups:   𝑥, ,   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝜑,𝑥   𝑥,𝑊   𝑥, ·   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem tcphcphlem2
StepHypRef Expression
1 tcphval.n . . . . . . 7 𝐺 = (toℂPreHil‘𝑊)
2 tcphcph.v . . . . . . 7 𝑉 = (Base‘𝑊)
3 tcphcph.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
4 tcphcph.1 . . . . . . 7 (𝜑𝑊 ∈ PreHil)
5 tcphcph.2 . . . . . . 7 (𝜑𝐹 = (ℂflds 𝐾))
61, 2, 3, 4, 5phclm 25266 . . . . . 6 (𝜑𝑊 ∈ ℂMod)
7 tcphcph.k . . . . . . 7 𝐾 = (Base‘𝐹)
83, 7clmsscn 25112 . . . . . 6 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
96, 8syl 17 . . . . 5 (𝜑𝐾 ⊆ ℂ)
10 tcphcphlem2.3 . . . . 5 (𝜑𝑋𝐾)
119, 10sseldd 3984 . . . 4 (𝜑𝑋 ∈ ℂ)
1211cjmulrcld 15245 . . 3 (𝜑 → (𝑋 · (∗‘𝑋)) ∈ ℝ)
1311cjmulge0d 15247 . . 3 (𝜑 → 0 ≤ (𝑋 · (∗‘𝑋)))
14 tcphcphlem2.4 . . . 4 (𝜑𝑌𝑉)
15 tcphcph.h . . . . 5 , = (·𝑖𝑊)
161, 2, 3, 4, 5, 15tcphcphlem3 25267 . . . 4 ((𝜑𝑌𝑉) → (𝑌 , 𝑌) ∈ ℝ)
1714, 16mpdan 687 . . 3 (𝜑 → (𝑌 , 𝑌) ∈ ℝ)
18 oveq12 7440 . . . . . 6 ((𝑥 = 𝑌𝑥 = 𝑌) → (𝑥 , 𝑥) = (𝑌 , 𝑌))
1918anidms 566 . . . . 5 (𝑥 = 𝑌 → (𝑥 , 𝑥) = (𝑌 , 𝑌))
2019breq2d 5155 . . . 4 (𝑥 = 𝑌 → (0 ≤ (𝑥 , 𝑥) ↔ 0 ≤ (𝑌 , 𝑌)))
21 tcphcph.4 . . . . 5 ((𝜑𝑥𝑉) → 0 ≤ (𝑥 , 𝑥))
2221ralrimiva 3146 . . . 4 (𝜑 → ∀𝑥𝑉 0 ≤ (𝑥 , 𝑥))
2320, 22, 14rspcdva 3623 . . 3 (𝜑 → 0 ≤ (𝑌 , 𝑌))
2412, 13, 17, 23sqrtmuld 15463 . 2 (𝜑 → (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌))))
25 phllmod 21648 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
264, 25syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
27 tcphcph.s . . . . . . 7 · = ( ·𝑠𝑊)
282, 3, 27, 7lmodvscl 20876 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑌𝑉) → (𝑋 · 𝑌) ∈ 𝑉)
2926, 10, 14, 28syl3anc 1373 . . . . 5 (𝜑 → (𝑋 · 𝑌) ∈ 𝑉)
30 eqid 2737 . . . . . 6 (.r𝐹) = (.r𝐹)
31 eqid 2737 . . . . . 6 (*𝑟𝐹) = (*𝑟𝐹)
323, 15, 2, 7, 27, 30, 31ipassr 21664 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝑋 · 𝑌) ∈ 𝑉𝑌𝑉𝑋𝐾)) → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
334, 29, 14, 10, 32syl13anc 1374 . . . 4 (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
343clmmul 25108 . . . . . 6 (𝑊 ∈ ℂMod → · = (.r𝐹))
356, 34syl 17 . . . . 5 (𝜑 → · = (.r𝐹))
3635oveqd 7448 . . . . . 6 (𝜑 → (𝑋 · (𝑌 , 𝑌)) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
373, 15, 2, 7, 27, 30ipass 21663 . . . . . . 7 ((𝑊 ∈ PreHil ∧ (𝑋𝐾𝑌𝑉𝑌𝑉)) → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
384, 10, 14, 14, 37syl13anc 1374 . . . . . 6 (𝜑 → ((𝑋 · 𝑌) , 𝑌) = (𝑋(.r𝐹)(𝑌 , 𝑌)))
3936, 38eqtr4d 2780 . . . . 5 (𝜑 → (𝑋 · (𝑌 , 𝑌)) = ((𝑋 · 𝑌) , 𝑌))
403clmcj 25109 . . . . . . 7 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
416, 40syl 17 . . . . . 6 (𝜑 → ∗ = (*𝑟𝐹))
4241fveq1d 6908 . . . . 5 (𝜑 → (∗‘𝑋) = ((*𝑟𝐹)‘𝑋))
4335, 39, 42oveq123d 7452 . . . 4 (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = (((𝑋 · 𝑌) , 𝑌)(.r𝐹)((*𝑟𝐹)‘𝑋)))
4417recnd 11289 . . . . 5 (𝜑 → (𝑌 , 𝑌) ∈ ℂ)
4511cjcld 15235 . . . . 5 (𝜑 → (∗‘𝑋) ∈ ℂ)
4611, 44, 45mul32d 11471 . . . 4 (𝜑 → ((𝑋 · (𝑌 , 𝑌)) · (∗‘𝑋)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))
4733, 43, 463eqtr2d 2783 . . 3 (𝜑 → ((𝑋 · 𝑌) , (𝑋 · 𝑌)) = ((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌)))
4847fveq2d 6910 . 2 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = (√‘((𝑋 · (∗‘𝑋)) · (𝑌 , 𝑌))))
49 absval 15277 . . . 4 (𝑋 ∈ ℂ → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋))))
5011, 49syl 17 . . 3 (𝜑 → (abs‘𝑋) = (√‘(𝑋 · (∗‘𝑋))))
5150oveq1d 7446 . 2 (𝜑 → ((abs‘𝑋) · (√‘(𝑌 , 𝑌))) = ((√‘(𝑋 · (∗‘𝑋))) · (√‘(𝑌 , 𝑌))))
5224, 48, 513eqtr4d 2787 1 (𝜑 → (√‘((𝑋 · 𝑌) , (𝑋 · 𝑌))) = ((abs‘𝑋) · (√‘(𝑌 , 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   · cmul 11160  cle 11296  ccj 15135  csqrt 15272  abscabs 15273  Basecbs 17247  s cress 17274  .rcmulr 17298  *𝑟cstv 17299  Scalarcsca 17300   ·𝑠 cvsca 17301  ·𝑖cip 17302  LModclmod 20858  fldccnfld 21364  PreHilcphl 21642  ℂModcclm 25095  toℂPreHilctcph 25201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-subg 19141  df-ghm 19231  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-rhm 20472  df-subrg 20570  df-drng 20731  df-staf 20840  df-srng 20841  df-lmod 20860  df-lmhm 21021  df-lvec 21102  df-sra 21172  df-rgmod 21173  df-cnfld 21365  df-phl 21644  df-clm 25096
This theorem is referenced by:  tcphcph  25271
  Copyright terms: Public domain W3C validator