![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abscj | Structured version Visualization version GIF version |
Description: The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.) |
Ref | Expression |
---|---|
abscj | ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjcl 15141 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
2 | absval 15274 | . . . 4 ⊢ ((∗‘𝐴) ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴))))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴))))) |
4 | mulcom 11239 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴)) | |
5 | 1, 4 | mpdan 687 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴)) |
6 | cjcj 15176 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) | |
7 | 6 | oveq2d 7447 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((∗‘𝐴) · (∗‘(∗‘𝐴))) = ((∗‘𝐴) · 𝐴)) |
8 | 5, 7 | eqtr4d 2778 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · (∗‘(∗‘𝐴)))) |
9 | 8 | fveq2d 6911 | . . 3 ⊢ (𝐴 ∈ ℂ → (√‘(𝐴 · (∗‘𝐴))) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴))))) |
10 | 3, 9 | eqtr4d 2778 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘(𝐴 · (∗‘𝐴)))) |
11 | absval 15274 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | |
12 | 10, 11 | eqtr4d 2778 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 · cmul 11158 ∗ccj 15132 √csqrt 15269 abscabs 15270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-2 12327 df-cj 15135 df-re 15136 df-im 15137 df-abs 15272 |
This theorem is referenced by: abstri 15366 abs1m 15371 abscji 15437 abscjd 15486 |
Copyright terms: Public domain | W3C validator |