MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abscj Structured version   Visualization version   GIF version

Theorem abscj 14618
Description: The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.)
Assertion
Ref Expression
abscj (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴))

Proof of Theorem abscj
StepHypRef Expression
1 cjcl 14443 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
2 absval 14576 . . . 4 ((∗‘𝐴) ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴)))))
31, 2syl 17 . . 3 (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴)))))
4 mulcom 10600 . . . . . 6 ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴))
51, 4mpdan 686 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴))
6 cjcj 14478 . . . . . 6 (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴)
76oveq2d 7146 . . . . 5 (𝐴 ∈ ℂ → ((∗‘𝐴) · (∗‘(∗‘𝐴))) = ((∗‘𝐴) · 𝐴))
85, 7eqtr4d 2859 . . . 4 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · (∗‘(∗‘𝐴))))
98fveq2d 6647 . . 3 (𝐴 ∈ ℂ → (√‘(𝐴 · (∗‘𝐴))) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴)))))
103, 9eqtr4d 2859 . 2 (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘(𝐴 · (∗‘𝐴))))
11 absval 14576 . 2 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
1210, 11eqtr4d 2859 1 (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  cfv 6328  (class class class)co 7130  cc 10512   · cmul 10519  ccj 14434  csqrt 14571  abscabs 14572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-2 11678  df-cj 14437  df-re 14438  df-im 14439  df-abs 14574
This theorem is referenced by:  abstri  14669  abs1m  14674  abscji  14740  abscjd  14789
  Copyright terms: Public domain W3C validator