![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abscj | Structured version Visualization version GIF version |
Description: The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.) |
Ref | Expression |
---|---|
abscj | ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjcl 14222 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
2 | absval 14355 | . . . 4 ⊢ ((∗‘𝐴) ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴))))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴))))) |
4 | mulcom 10338 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴)) | |
5 | 1, 4 | mpdan 680 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴)) |
6 | cjcj 14257 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) | |
7 | 6 | oveq2d 6921 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((∗‘𝐴) · (∗‘(∗‘𝐴))) = ((∗‘𝐴) · 𝐴)) |
8 | 5, 7 | eqtr4d 2864 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · (∗‘(∗‘𝐴)))) |
9 | 8 | fveq2d 6437 | . . 3 ⊢ (𝐴 ∈ ℂ → (√‘(𝐴 · (∗‘𝐴))) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴))))) |
10 | 3, 9 | eqtr4d 2864 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘(𝐴 · (∗‘𝐴)))) |
11 | absval 14355 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | |
12 | 10, 11 | eqtr4d 2864 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 ‘cfv 6123 (class class class)co 6905 ℂcc 10250 · cmul 10257 ∗ccj 14213 √csqrt 14350 abscabs 14351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-po 5263 df-so 5264 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-2 11414 df-cj 14216 df-re 14217 df-im 14218 df-abs 14353 |
This theorem is referenced by: abstri 14447 abs1m 14452 abscji 14517 abscjd 14566 |
Copyright terms: Public domain | W3C validator |