Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abscj | Structured version Visualization version GIF version |
Description: The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.) |
Ref | Expression |
---|---|
abscj | ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjcl 14916 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
2 | absval 15049 | . . . 4 ⊢ ((∗‘𝐴) ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴))))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴))))) |
4 | mulcom 11063 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴)) | |
5 | 1, 4 | mpdan 685 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴)) |
6 | cjcj 14951 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) | |
7 | 6 | oveq2d 7358 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((∗‘𝐴) · (∗‘(∗‘𝐴))) = ((∗‘𝐴) · 𝐴)) |
8 | 5, 7 | eqtr4d 2780 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · (∗‘(∗‘𝐴)))) |
9 | 8 | fveq2d 6834 | . . 3 ⊢ (𝐴 ∈ ℂ → (√‘(𝐴 · (∗‘𝐴))) = (√‘((∗‘𝐴) · (∗‘(∗‘𝐴))))) |
10 | 3, 9 | eqtr4d 2780 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (√‘(𝐴 · (∗‘𝐴)))) |
11 | absval 15049 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | |
12 | 10, 11 | eqtr4d 2780 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6484 (class class class)co 7342 ℂcc 10975 · cmul 10982 ∗ccj 14907 √csqrt 15044 abscabs 15045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-po 5537 df-so 5538 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-2 12142 df-cj 14910 df-re 14911 df-im 14912 df-abs 15047 |
This theorem is referenced by: abstri 15142 abs1m 15147 abscji 15213 abscjd 15262 |
Copyright terms: Public domain | W3C validator |