MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absid Structured version   Visualization version   GIF version

Theorem absid 14936
Description: A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absid ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)

Proof of Theorem absid
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
21recnd 10934 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
3 absval 14877 . . 3 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
42, 3syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
51cjred 14865 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∗‘𝐴) = 𝐴)
65oveq2d 7271 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴 · 𝐴))
72sqvald 13789 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴))
86, 7eqtr4d 2781 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴↑2))
98fveq2d 6760 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · (∗‘𝐴))) = (√‘(𝐴↑2)))
10 sqrtsq 14909 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴)
114, 9, 103eqtrd 2782 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   · cmul 10807  cle 10941  2c2 11958  cexp 13710  ccj 14735  csqrt 14872  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  abs1  14937  absnid  14938  leabs  14939  absor  14940  sqabs  14947  max0add  14950  absidm  14963  abssubge0  14967  fzomaxdiflem  14982  absidi  15017  absidd  15062  o1fsum  15453  geo2lim  15515  geoihalfsum  15522  ege2le3  15727  eirrlem  15841  rpnnen2lem3  15853  rpnnen2lem9  15859  6gcd4e2  16174  lcmgcdnn  16244  lcmfun  16278  lcmfass  16279  zringndrg  20602  ncvsge0  24222  iscmet3lem3  24359  minveclem2  24495  mbfi1fseqlem6  24790  dvfsumrlim  25100  aaliou3lem3  25409  pserulm  25486  pige3ALT  25581  efif1olem4  25606  cxpcn3lem  25805  log2cnv  25999  log2tlbnd  26000  cxplim  26026  cxploglim2  26033  divsqrtsumo1  26038  fsumharmonic  26066  zetacvg  26069  logfacrlim  26277  logexprlim  26278  dchrmusum2  26547  dchrvmasumlem3  26552  dchrisum0lem1  26569  dchrisum0lem2a  26570  dchrisum0lem2  26571  mudivsum  26583  mulogsumlem  26584  log2sumbnd  26597  selberglem2  26599  selberg3lem1  26610  pntpbnd2  26640  pntibndlem2  26644  pntlemn  26653  pntlemj  26656  pntlemo  26660  ex-abs  28720  ex-gcd  28722  nvsge0  28927  nmoub2i  29037  minvecolem2  29138  subfacval3  33051  knoppndvlem14  34632  poimir  35737  ftc1anclem5  35781  lcm2un  39950  oddcomabszz  40682  reabsifneg  41129  reabsifnpos  41130  reabsifpos  41131  reabsifnneg  41132  fourierdlem68  43605  itsclc0yqsol  45998
  Copyright terms: Public domain W3C validator