MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absid Structured version   Visualization version   GIF version

Theorem absid 15318
Description: A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absid ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)

Proof of Theorem absid
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
21recnd 11272 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
3 absval 15260 . . 3 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
42, 3syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
51cjred 15248 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∗‘𝐴) = 𝐴)
65oveq2d 7430 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴 · 𝐴))
72sqvald 14166 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴))
86, 7eqtr4d 2772 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴↑2))
98fveq2d 6891 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · (∗‘𝐴))) = (√‘(𝐴↑2)))
10 sqrtsq 15291 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴)
114, 9, 103eqtrd 2773 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107   class class class wbr 5125  cfv 6542  (class class class)co 7414  cc 11136  cr 11137  0cc0 11138   · cmul 11143  cle 11279  2c2 12304  cexp 14085  ccj 15118  csqrt 15255  abscabs 15256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-rp 13018  df-seq 14026  df-exp 14086  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258
This theorem is referenced by:  abs1  15319  absnid  15320  leabs  15321  absor  15322  sqabs  15329  max0add  15332  absidm  15345  abssubge0  15349  fzomaxdiflem  15364  absidi  15399  absidd  15444  o1fsum  15832  geo2lim  15894  geoihalfsum  15901  ege2le3  16109  eirrlem  16223  rpnnen2lem3  16235  rpnnen2lem9  16241  6gcd4e2  16558  lcmgcdnn  16631  lcmfun  16665  lcmfass  16666  zringndrg  21446  ncvsge0  25142  iscmet3lem3  25279  minveclem2  25415  mbfi1fseqlem6  25710  dvfsumrlim  26027  aaliou3lem3  26341  pserulm  26420  pige3ALT  26517  efif1olem4  26542  cxpcn3lem  26745  log2cnv  26942  log2tlbnd  26943  cxplim  26970  cxploglim2  26977  divsqrtsumo1  26982  fsumharmonic  27010  zetacvg  27013  logfacrlim  27223  logexprlim  27224  dchrmusum2  27493  dchrvmasumlem3  27498  dchrisum0lem1  27515  dchrisum0lem2a  27516  dchrisum0lem2  27517  mudivsum  27529  mulogsumlem  27530  log2sumbnd  27543  selberglem2  27545  selberg3lem1  27556  pntpbnd2  27586  pntibndlem2  27590  pntlemn  27599  pntlemj  27602  pntlemo  27606  ex-abs  30421  ex-gcd  30423  nvsge0  30630  nmoub2i  30740  minvecolem2  30841  subfacval3  35135  knoppndvlem14  36467  poimir  37601  ftc1anclem5  37645  lcm2un  41956  rpabsid  42301  oddcomabszz  42901  reabsifneg  43590  reabsifnpos  43591  reabsifpos  43592  reabsifnneg  43593  fourierdlem68  46134  itsclc0yqsol  48631
  Copyright terms: Public domain W3C validator