MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absid Structured version   Visualization version   GIF version

Theorem absid 15262
Description: A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absid ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)

Proof of Theorem absid
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
21recnd 11202 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
3 absval 15204 . . 3 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
42, 3syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
51cjred 15192 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∗‘𝐴) = 𝐴)
65oveq2d 7403 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴 · 𝐴))
72sqvald 14108 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴))
86, 7eqtr4d 2767 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴↑2))
98fveq2d 6862 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · (∗‘𝐴))) = (√‘(𝐴↑2)))
10 sqrtsq 15235 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴)
114, 9, 103eqtrd 2768 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   · cmul 11073  cle 11209  2c2 12241  cexp 14026  ccj 15062  csqrt 15199  abscabs 15200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202
This theorem is referenced by:  abs1  15263  absnid  15264  leabs  15265  absor  15266  sqabs  15273  max0add  15276  absidm  15290  abssubge0  15294  fzomaxdiflem  15309  absidi  15344  absidd  15389  o1fsum  15779  geo2lim  15841  geoihalfsum  15848  ege2le3  16056  eirrlem  16172  rpnnen2lem3  16184  rpnnen2lem9  16190  6gcd4e2  16508  lcmgcdnn  16581  lcmfun  16615  lcmfass  16616  zringndrg  21378  ncvsge0  25053  iscmet3lem3  25190  minveclem2  25326  mbfi1fseqlem6  25621  dvfsumrlim  25938  aaliou3lem3  26252  pserulm  26331  pige3ALT  26429  efif1olem4  26454  cxpcn3lem  26657  log2cnv  26854  log2tlbnd  26855  cxplim  26882  cxploglim2  26889  divsqrtsumo1  26894  fsumharmonic  26922  zetacvg  26925  logfacrlim  27135  logexprlim  27136  dchrmusum2  27405  dchrvmasumlem3  27410  dchrisum0lem1  27427  dchrisum0lem2a  27428  dchrisum0lem2  27429  mudivsum  27441  mulogsumlem  27442  log2sumbnd  27455  selberglem2  27457  selberg3lem1  27468  pntpbnd2  27498  pntibndlem2  27502  pntlemn  27511  pntlemj  27514  pntlemo  27518  ex-abs  30384  ex-gcd  30386  nvsge0  30593  nmoub2i  30703  minvecolem2  30804  iconstr  33756  subfacval3  35176  knoppndvlem14  36513  poimir  37647  ftc1anclem5  37691  lcm2un  42002  rpabsid  42309  oddcomabszz  42933  reabsifneg  43621  reabsifnpos  43622  reabsifpos  43623  reabsifnneg  43624  fourierdlem68  46172  itsclc0yqsol  48753
  Copyright terms: Public domain W3C validator