| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absid | Structured version Visualization version GIF version | ||
| Description: A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| absid | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
| 2 | 1 | recnd 11202 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ) |
| 3 | absval 15204 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
| 5 | 1 | cjred 15192 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∗‘𝐴) = 𝐴) |
| 6 | 5 | oveq2d 7403 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴 · 𝐴)) |
| 7 | 2 | sqvald 14108 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴)) |
| 8 | 6, 7 | eqtr4d 2767 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴↑2)) |
| 9 | 8 | fveq2d 6862 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · (∗‘𝐴))) = (√‘(𝐴↑2))) |
| 10 | sqrtsq 15235 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴) | |
| 11 | 4, 9, 10 | 3eqtrd 2768 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 · cmul 11073 ≤ cle 11209 2c2 12241 ↑cexp 14026 ∗ccj 15062 √csqrt 15199 abscabs 15200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 |
| This theorem is referenced by: abs1 15263 absnid 15264 leabs 15265 absor 15266 sqabs 15273 max0add 15276 absidm 15290 abssubge0 15294 fzomaxdiflem 15309 absidi 15344 absidd 15389 o1fsum 15779 geo2lim 15841 geoihalfsum 15848 ege2le3 16056 eirrlem 16172 rpnnen2lem3 16184 rpnnen2lem9 16190 6gcd4e2 16508 lcmgcdnn 16581 lcmfun 16615 lcmfass 16616 zringndrg 21378 ncvsge0 25053 iscmet3lem3 25190 minveclem2 25326 mbfi1fseqlem6 25621 dvfsumrlim 25938 aaliou3lem3 26252 pserulm 26331 pige3ALT 26429 efif1olem4 26454 cxpcn3lem 26657 log2cnv 26854 log2tlbnd 26855 cxplim 26882 cxploglim2 26889 divsqrtsumo1 26894 fsumharmonic 26922 zetacvg 26925 logfacrlim 27135 logexprlim 27136 dchrmusum2 27405 dchrvmasumlem3 27410 dchrisum0lem1 27427 dchrisum0lem2a 27428 dchrisum0lem2 27429 mudivsum 27441 mulogsumlem 27442 log2sumbnd 27455 selberglem2 27457 selberg3lem1 27468 pntpbnd2 27498 pntibndlem2 27502 pntlemn 27511 pntlemj 27514 pntlemo 27518 ex-abs 30384 ex-gcd 30386 nvsge0 30593 nmoub2i 30703 minvecolem2 30804 iconstr 33756 subfacval3 35176 knoppndvlem14 36513 poimir 37647 ftc1anclem5 37691 lcm2un 42002 rpabsid 42309 oddcomabszz 42933 reabsifneg 43621 reabsifnpos 43622 reabsifpos 43623 reabsifnneg 43624 fourierdlem68 46172 itsclc0yqsol 48753 |
| Copyright terms: Public domain | W3C validator |