| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absid | Structured version Visualization version GIF version | ||
| Description: A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| absid | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
| 2 | 1 | recnd 11220 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ) |
| 3 | absval 15214 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
| 5 | 1 | cjred 15202 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∗‘𝐴) = 𝐴) |
| 6 | 5 | oveq2d 7410 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴 · 𝐴)) |
| 7 | 2 | sqvald 14118 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴)) |
| 8 | 6, 7 | eqtr4d 2768 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴↑2)) |
| 9 | 8 | fveq2d 6869 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · (∗‘𝐴))) = (√‘(𝐴↑2))) |
| 10 | sqrtsq 15245 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴) | |
| 11 | 4, 9, 10 | 3eqtrd 2769 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 ℂcc 11084 ℝcr 11085 0cc0 11086 · cmul 11091 ≤ cle 11227 2c2 12252 ↑cexp 14036 ∗ccj 15072 √csqrt 15209 abscabs 15210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-z 12546 df-uz 12810 df-rp 12966 df-seq 13977 df-exp 14037 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 |
| This theorem is referenced by: abs1 15273 absnid 15274 leabs 15275 absor 15276 sqabs 15283 max0add 15286 absidm 15299 abssubge0 15303 fzomaxdiflem 15318 absidi 15353 absidd 15398 o1fsum 15786 geo2lim 15848 geoihalfsum 15855 ege2le3 16063 eirrlem 16179 rpnnen2lem3 16191 rpnnen2lem9 16197 6gcd4e2 16514 lcmgcdnn 16587 lcmfun 16621 lcmfass 16622 zringndrg 21384 ncvsge0 25060 iscmet3lem3 25197 minveclem2 25333 mbfi1fseqlem6 25628 dvfsumrlim 25945 aaliou3lem3 26259 pserulm 26338 pige3ALT 26436 efif1olem4 26461 cxpcn3lem 26664 log2cnv 26861 log2tlbnd 26862 cxplim 26889 cxploglim2 26896 divsqrtsumo1 26901 fsumharmonic 26929 zetacvg 26932 logfacrlim 27142 logexprlim 27143 dchrmusum2 27412 dchrvmasumlem3 27417 dchrisum0lem1 27434 dchrisum0lem2a 27435 dchrisum0lem2 27436 mudivsum 27448 mulogsumlem 27449 log2sumbnd 27462 selberglem2 27464 selberg3lem1 27475 pntpbnd2 27505 pntibndlem2 27509 pntlemn 27518 pntlemj 27521 pntlemo 27525 ex-abs 30391 ex-gcd 30393 nvsge0 30600 nmoub2i 30710 minvecolem2 30811 iconstr 33764 subfacval3 35178 knoppndvlem14 36510 poimir 37644 ftc1anclem5 37688 lcm2un 41994 rpabsid 42301 oddcomabszz 42905 reabsifneg 43593 reabsifnpos 43594 reabsifpos 43595 reabsifnneg 43596 fourierdlem68 46145 itsclc0yqsol 48686 |
| Copyright terms: Public domain | W3C validator |