MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absid Structured version   Visualization version   GIF version

Theorem absid 15203
Description: A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absid ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)

Proof of Theorem absid
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
21recnd 11143 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
3 absval 15145 . . 3 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
42, 3syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
51cjred 15133 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∗‘𝐴) = 𝐴)
65oveq2d 7365 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴 · 𝐴))
72sqvald 14050 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴))
86, 7eqtr4d 2767 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴↑2))
98fveq2d 6826 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · (∗‘𝐴))) = (√‘(𝐴↑2)))
10 sqrtsq 15176 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴)
114, 9, 103eqtrd 2768 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009   · cmul 11014  cle 11150  2c2 12183  cexp 13968  ccj 15003  csqrt 15140  abscabs 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by:  abs1  15204  absnid  15205  leabs  15206  absor  15207  sqabs  15214  max0add  15217  absidm  15231  abssubge0  15235  fzomaxdiflem  15250  absidi  15285  absidd  15330  o1fsum  15720  geo2lim  15782  geoihalfsum  15789  ege2le3  15997  eirrlem  16113  rpnnen2lem3  16125  rpnnen2lem9  16131  6gcd4e2  16449  lcmgcdnn  16522  lcmfun  16556  lcmfass  16557  zringndrg  21375  ncvsge0  25051  iscmet3lem3  25188  minveclem2  25324  mbfi1fseqlem6  25619  dvfsumrlim  25936  aaliou3lem3  26250  pserulm  26329  pige3ALT  26427  efif1olem4  26452  cxpcn3lem  26655  log2cnv  26852  log2tlbnd  26853  cxplim  26880  cxploglim2  26887  divsqrtsumo1  26892  fsumharmonic  26920  zetacvg  26923  logfacrlim  27133  logexprlim  27134  dchrmusum2  27403  dchrvmasumlem3  27408  dchrisum0lem1  27425  dchrisum0lem2a  27426  dchrisum0lem2  27427  mudivsum  27439  mulogsumlem  27440  log2sumbnd  27453  selberglem2  27455  selberg3lem1  27466  pntpbnd2  27496  pntibndlem2  27500  pntlemn  27509  pntlemj  27512  pntlemo  27516  ex-abs  30399  ex-gcd  30401  nvsge0  30608  nmoub2i  30718  minvecolem2  30819  iconstr  33733  subfacval3  35166  knoppndvlem14  36503  poimir  37637  ftc1anclem5  37681  lcm2un  41991  rpabsid  42298  oddcomabszz  42921  reabsifneg  43609  reabsifnpos  43610  reabsifpos  43611  reabsifnneg  43612  fourierdlem68  46159  itsclc0yqsol  48753
  Copyright terms: Public domain W3C validator