MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absid Structured version   Visualization version   GIF version

Theorem absid 15301
Description: A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absid ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)

Proof of Theorem absid
StepHypRef Expression
1 simpl 481 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
21recnd 11292 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
3 absval 15243 . . 3 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
42, 3syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
51cjred 15231 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∗‘𝐴) = 𝐴)
65oveq2d 7440 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴 · 𝐴))
72sqvald 14162 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴↑2) = (𝐴 · 𝐴))
86, 7eqtr4d 2769 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · (∗‘𝐴)) = (𝐴↑2))
98fveq2d 6905 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · (∗‘𝐴))) = (√‘(𝐴↑2)))
10 sqrtsq 15274 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴)
114, 9, 103eqtrd 2770 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099   class class class wbr 5153  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158   · cmul 11163  cle 11299  2c2 12319  cexp 14081  ccj 15101  csqrt 15238  abscabs 15239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241
This theorem is referenced by:  abs1  15302  absnid  15303  leabs  15304  absor  15305  sqabs  15312  max0add  15315  absidm  15328  abssubge0  15332  fzomaxdiflem  15347  absidi  15382  absidd  15427  o1fsum  15817  geo2lim  15879  geoihalfsum  15886  ege2le3  16092  eirrlem  16206  rpnnen2lem3  16218  rpnnen2lem9  16224  6gcd4e2  16539  lcmgcdnn  16612  lcmfun  16646  lcmfass  16647  zringndrg  21458  ncvsge0  25172  iscmet3lem3  25309  minveclem2  25445  mbfi1fseqlem6  25741  dvfsumrlim  26057  aaliou3lem3  26372  pserulm  26451  pige3ALT  26547  efif1olem4  26572  cxpcn3lem  26775  log2cnv  26972  log2tlbnd  26973  cxplim  27000  cxploglim2  27007  divsqrtsumo1  27012  fsumharmonic  27040  zetacvg  27043  logfacrlim  27253  logexprlim  27254  dchrmusum2  27523  dchrvmasumlem3  27528  dchrisum0lem1  27545  dchrisum0lem2a  27546  dchrisum0lem2  27547  mudivsum  27559  mulogsumlem  27560  log2sumbnd  27573  selberglem2  27575  selberg3lem1  27586  pntpbnd2  27616  pntibndlem2  27620  pntlemn  27629  pntlemj  27632  pntlemo  27636  ex-abs  30388  ex-gcd  30390  nvsge0  30597  nmoub2i  30707  minvecolem2  30808  subfacval3  35017  knoppndvlem14  36228  poimir  37354  ftc1anclem5  37398  lcm2un  41713  oddcomabszz  42602  reabsifneg  43299  reabsifnpos  43300  reabsifpos  43301  reabsifnneg  43302  fourierdlem68  45795  itsclc0yqsol  48152
  Copyright terms: Public domain W3C validator