MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absneg Structured version   Visualization version   GIF version

Theorem absneg 15088
Description: Absolute value of the opposite. (Contributed by NM, 27-Feb-2005.)
Assertion
Ref Expression
absneg (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))

Proof of Theorem absneg
StepHypRef Expression
1 cjneg 14957 . . . . 5 (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴))
21oveq2d 7353 . . . 4 (𝐴 ∈ ℂ → (-𝐴 · (∗‘-𝐴)) = (-𝐴 · -(∗‘𝐴)))
3 cjcl 14915 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
4 mul2neg 11515 . . . . 5 ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (-𝐴 · -(∗‘𝐴)) = (𝐴 · (∗‘𝐴)))
53, 4mpdan 684 . . . 4 (𝐴 ∈ ℂ → (-𝐴 · -(∗‘𝐴)) = (𝐴 · (∗‘𝐴)))
62, 5eqtrd 2776 . . 3 (𝐴 ∈ ℂ → (-𝐴 · (∗‘-𝐴)) = (𝐴 · (∗‘𝐴)))
76fveq2d 6829 . 2 (𝐴 ∈ ℂ → (√‘(-𝐴 · (∗‘-𝐴))) = (√‘(𝐴 · (∗‘𝐴))))
8 negcl 11322 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
9 absval 15048 . . 3 (-𝐴 ∈ ℂ → (abs‘-𝐴) = (√‘(-𝐴 · (∗‘-𝐴))))
108, 9syl 17 . 2 (𝐴 ∈ ℂ → (abs‘-𝐴) = (√‘(-𝐴 · (∗‘-𝐴))))
11 absval 15048 . 2 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
127, 10, 113eqtr4d 2786 1 (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cfv 6479  (class class class)co 7337  cc 10970   · cmul 10977  -cneg 11307  ccj 14906  csqrt 15043  abscabs 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-po 5532  df-so 5533  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-2 12137  df-cj 14909  df-re 14910  df-im 14911  df-abs 15046
This theorem is referenced by:  absnid  15109  absimle  15120  abslt  15125  absle  15126  abssub  15137  abs2dif2  15144  sqreulem  15170  absnegi  15211  absnegd  15260  cnheibor  24224  ftalem3  26330  qqhcn  32239  jm2.26lem3  41086  sqrtcvallem4  41568
  Copyright terms: Public domain W3C validator