![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > absneg | Structured version Visualization version GIF version |
Description: Absolute value of the negative. (Contributed by NM, 27-Feb-2005.) |
Ref | Expression |
---|---|
absneg | ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjneg 15196 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴)) | |
2 | 1 | oveq2d 7464 | . . . 4 ⊢ (𝐴 ∈ ℂ → (-𝐴 · (∗‘-𝐴)) = (-𝐴 · -(∗‘𝐴))) |
3 | cjcl 15154 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
4 | mul2neg 11729 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (-𝐴 · -(∗‘𝐴)) = (𝐴 · (∗‘𝐴))) | |
5 | 3, 4 | mpdan 686 | . . . 4 ⊢ (𝐴 ∈ ℂ → (-𝐴 · -(∗‘𝐴)) = (𝐴 · (∗‘𝐴))) |
6 | 2, 5 | eqtrd 2780 | . . 3 ⊢ (𝐴 ∈ ℂ → (-𝐴 · (∗‘-𝐴)) = (𝐴 · (∗‘𝐴))) |
7 | 6 | fveq2d 6924 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘(-𝐴 · (∗‘-𝐴))) = (√‘(𝐴 · (∗‘𝐴)))) |
8 | negcl 11536 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
9 | absval 15287 | . . 3 ⊢ (-𝐴 ∈ ℂ → (abs‘-𝐴) = (√‘(-𝐴 · (∗‘-𝐴)))) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (√‘(-𝐴 · (∗‘-𝐴)))) |
11 | absval 15287 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | |
12 | 7, 10, 11 | 3eqtr4d 2790 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 · cmul 11189 -cneg 11521 ∗ccj 15145 √csqrt 15282 abscabs 15283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-cj 15148 df-re 15149 df-im 15150 df-abs 15285 |
This theorem is referenced by: absnid 15347 absimle 15358 abslt 15363 absle 15364 abssub 15375 abs2dif2 15382 sqreulem 15408 absnegi 15449 absnegd 15498 cnheibor 25006 ftalem3 27136 qqhcn 33937 jm2.26lem3 42958 sqrtcvallem4 43601 |
Copyright terms: Public domain | W3C validator |