MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absneg Structured version   Visualization version   GIF version

Theorem absneg 14498
Description: Absolute value of the opposite. (Contributed by NM, 27-Feb-2005.)
Assertion
Ref Expression
absneg (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))

Proof of Theorem absneg
StepHypRef Expression
1 cjneg 14367 . . . . 5 (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴))
21oveq2d 6992 . . . 4 (𝐴 ∈ ℂ → (-𝐴 · (∗‘-𝐴)) = (-𝐴 · -(∗‘𝐴)))
3 cjcl 14325 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
4 mul2neg 10880 . . . . 5 ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (-𝐴 · -(∗‘𝐴)) = (𝐴 · (∗‘𝐴)))
53, 4mpdan 674 . . . 4 (𝐴 ∈ ℂ → (-𝐴 · -(∗‘𝐴)) = (𝐴 · (∗‘𝐴)))
62, 5eqtrd 2814 . . 3 (𝐴 ∈ ℂ → (-𝐴 · (∗‘-𝐴)) = (𝐴 · (∗‘𝐴)))
76fveq2d 6503 . 2 (𝐴 ∈ ℂ → (√‘(-𝐴 · (∗‘-𝐴))) = (√‘(𝐴 · (∗‘𝐴))))
8 negcl 10686 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
9 absval 14458 . . 3 (-𝐴 ∈ ℂ → (abs‘-𝐴) = (√‘(-𝐴 · (∗‘-𝐴))))
108, 9syl 17 . 2 (𝐴 ∈ ℂ → (abs‘-𝐴) = (√‘(-𝐴 · (∗‘-𝐴))))
11 absval 14458 . 2 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
127, 10, 113eqtr4d 2824 1 (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2050  cfv 6188  (class class class)co 6976  cc 10333   · cmul 10340  -cneg 10671  ccj 14316  csqrt 14453  abscabs 14454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-po 5326  df-so 5327  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-2 11503  df-cj 14319  df-re 14320  df-im 14321  df-abs 14456
This theorem is referenced by:  absnid  14519  absimle  14530  abslt  14535  absle  14536  abssub  14547  abs2dif2  14554  sqreulem  14580  absnegi  14621  absnegd  14670  cnheibor  23262  ftalem3  25354  qqhcn  30882  jm2.26lem3  39000
  Copyright terms: Public domain W3C validator