![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphipipcj | Structured version Visualization version GIF version |
Description: An inner product times its conjugate. (Contributed by NM, 23-Nov-2007.) (Revised by AV, 19-Oct-2021.) |
Ref | Expression |
---|---|
cphipcj.h | β’ , = (Β·πβπ) |
cphipcj.v | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
cphipipcj | β’ ((π β βPreHil β§ π΄ β π β§ π΅ β π) β ((π΄ , π΅) Β· (π΅ , π΄)) = ((absβ(π΄ , π΅))β2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphipcj.v | . . . . 5 β’ π = (Baseβπ) | |
2 | cphipcj.h | . . . . 5 β’ , = (Β·πβπ) | |
3 | 1, 2 | cphipcl 25040 | . . . 4 β’ ((π β βPreHil β§ π΄ β π β§ π΅ β π) β (π΄ , π΅) β β) |
4 | absval 15181 | . . . 4 β’ ((π΄ , π΅) β β β (absβ(π΄ , π΅)) = (ββ((π΄ , π΅) Β· (ββ(π΄ , π΅))))) | |
5 | 3, 4 | syl 17 | . . 3 β’ ((π β βPreHil β§ π΄ β π β§ π΅ β π) β (absβ(π΄ , π΅)) = (ββ((π΄ , π΅) Β· (ββ(π΄ , π΅))))) |
6 | 5 | oveq1d 7416 | . 2 β’ ((π β βPreHil β§ π΄ β π β§ π΅ β π) β ((absβ(π΄ , π΅))β2) = ((ββ((π΄ , π΅) Β· (ββ(π΄ , π΅))))β2)) |
7 | 3 | cjcld 15139 | . . . 4 β’ ((π β βPreHil β§ π΄ β π β§ π΅ β π) β (ββ(π΄ , π΅)) β β) |
8 | 3, 7 | mulcld 11230 | . . 3 β’ ((π β βPreHil β§ π΄ β π β§ π΅ β π) β ((π΄ , π΅) Β· (ββ(π΄ , π΅))) β β) |
9 | 8 | sqsqrtd 15382 | . 2 β’ ((π β βPreHil β§ π΄ β π β§ π΅ β π) β ((ββ((π΄ , π΅) Β· (ββ(π΄ , π΅))))β2) = ((π΄ , π΅) Β· (ββ(π΄ , π΅)))) |
10 | 2, 1 | cphipcj 25048 | . . 3 β’ ((π β βPreHil β§ π΄ β π β§ π΅ β π) β (ββ(π΄ , π΅)) = (π΅ , π΄)) |
11 | 10 | oveq2d 7417 | . 2 β’ ((π β βPreHil β§ π΄ β π β§ π΅ β π) β ((π΄ , π΅) Β· (ββ(π΄ , π΅))) = ((π΄ , π΅) Β· (π΅ , π΄))) |
12 | 6, 9, 11 | 3eqtrrd 2769 | 1 β’ ((π β βPreHil β§ π΄ β π β§ π΅ β π) β ((π΄ , π΅) Β· (π΅ , π΄)) = ((absβ(π΄ , π΅))β2)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6533 (class class class)co 7401 βcc 11103 Β· cmul 11110 2c2 12263 βcexp 14023 βccj 15039 βcsqrt 15176 abscabs 15177 Basecbs 17142 Β·πcip 17200 βPreHilccph 25015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 ax-addf 11184 ax-mulf 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-rp 12971 df-fz 13481 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-starv 17210 df-sca 17211 df-vsca 17212 df-ip 17213 df-tset 17214 df-ple 17215 df-ds 17217 df-unif 17218 df-0g 17385 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-grp 18855 df-minusg 18856 df-subg 19039 df-ghm 19128 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-subrg 20460 df-drng 20578 df-lmhm 20859 df-lvec 20940 df-sra 21010 df-rgmod 21011 df-cnfld 21228 df-phl 21486 df-nlm 24416 df-clm 24911 df-cph 25017 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |