MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abscl Structured version   Visualization version   GIF version

Theorem abscl 14990
Description: Real closure of absolute value. (Contributed by NM, 3-Oct-1999.)
Assertion
Ref Expression
abscl (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)

Proof of Theorem abscl
StepHypRef Expression
1 absval 14949 . 2 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
2 cjmulrcl 14855 . . 3 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ)
3 cjmulge0 14857 . . 3 (𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴)))
4 resqrtcl 14965 . . 3 (((𝐴 · (∗‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 · (∗‘𝐴))) → (√‘(𝐴 · (∗‘𝐴))) ∈ ℝ)
52, 3, 4syl2anc 584 . 2 (𝐴 ∈ ℂ → (√‘(𝐴 · (∗‘𝐴))) ∈ ℝ)
61, 5eqeltrd 2839 1 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   · cmul 10876  cle 11010  ccj 14807  csqrt 14944  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  absreim  15005  absdiv  15007  leabs  15011  absexp  15016  absexpz  15017  sqabs  15019  absimle  15021  abslt  15026  absle  15027  abssubne0  15028  lenegsq  15032  releabs  15033  recval  15034  absidm  15035  absgt0  15036  abstri  15042  abs2dif  15044  abs2difabs  15046  abs1m  15047  absf  15049  abs3lem  15050  abslem2  15051  absrdbnd  15053  caubnd2  15069  caubnd  15070  sqreulem  15071  sqreu  15072  abscli  15107  abscld  15148  mulcn2  15305  seqabs  15526  cvgcmpce  15530  divrcnv  15564  geomulcvg  15588  efcllem  15787  cnbl0  23937  cnblcld  23938  cncmet  24486  iblmulc2  24995  bddmulibl  25003  dveflem  25143  abelth  25600  efiarg  25762  argregt0  25765  argimgt0  25767  tanarg  25774  logtayllem  25814  bndatandm  26079  atantayl  26087  efrlim  26119  ftalem2  26223  lgslem3  26447  smcnlem  29059  cncph  29181  nmophmi  30393  bdophmi  30394  zrhnm  31919  sqrtcvallem2  41245  sqrtcvallem3  41246  sqrtcvallem4  41247  sqrtcvallem5  41248  sqrtcval  41249  absfico  42758
  Copyright terms: Public domain W3C validator