| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acnen2 | Structured version Visualization version GIF version | ||
| Description: The class of sets with choice sequences of length 𝐴 is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| acnen2 | ⊢ (𝑋 ≈ 𝑌 → (𝑋 ∈ AC 𝐴 ↔ 𝑌 ∈ AC 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym 8920 | . . 3 ⊢ (𝑋 ≈ 𝑌 → 𝑌 ≈ 𝑋) | |
| 2 | endom 8896 | . . 3 ⊢ (𝑌 ≈ 𝑋 → 𝑌 ≼ 𝑋) | |
| 3 | acndom2 9940 | . . 3 ⊢ (𝑌 ≼ 𝑋 → (𝑋 ∈ AC 𝐴 → 𝑌 ∈ AC 𝐴)) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝑋 ≈ 𝑌 → (𝑋 ∈ AC 𝐴 → 𝑌 ∈ AC 𝐴)) |
| 5 | endom 8896 | . . 3 ⊢ (𝑋 ≈ 𝑌 → 𝑋 ≼ 𝑌) | |
| 6 | acndom2 9940 | . . 3 ⊢ (𝑋 ≼ 𝑌 → (𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝑋 ≈ 𝑌 → (𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴)) |
| 8 | 4, 7 | impbid 212 | 1 ⊢ (𝑋 ≈ 𝑌 → (𝑋 ∈ AC 𝐴 ↔ 𝑌 ∈ AC 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 class class class wbr 5086 ≈ cen 8861 ≼ cdom 8862 AC wacn 9826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-acn 9830 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |