MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnen2 Structured version   Visualization version   GIF version

Theorem acnen2 10049
Description: The class of sets with choice sequences of length 𝐴 is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnen2 (𝑋𝑌 → (𝑋AC 𝐴𝑌AC 𝐴))

Proof of Theorem acnen2
StepHypRef Expression
1 ensym 8998 . . 3 (𝑋𝑌𝑌𝑋)
2 endom 8974 . . 3 (𝑌𝑋𝑌𝑋)
3 acndom2 10048 . . 3 (𝑌𝑋 → (𝑋AC 𝐴𝑌AC 𝐴))
41, 2, 33syl 18 . 2 (𝑋𝑌 → (𝑋AC 𝐴𝑌AC 𝐴))
5 endom 8974 . . 3 (𝑋𝑌𝑋𝑌)
6 acndom2 10048 . . 3 (𝑋𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
75, 6syl 17 . 2 (𝑋𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
84, 7impbid 211 1 (𝑋𝑌 → (𝑋AC 𝐴𝑌AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098   class class class wbr 5141  cen 8935  cdom 8936  AC wacn 9932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-acn 9936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator