![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acnen2 | Structured version Visualization version GIF version |
Description: The class of sets with choice sequences of length 𝐴 is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acnen2 | ⊢ (𝑋 ≈ 𝑌 → (𝑋 ∈ AC 𝐴 ↔ 𝑌 ∈ AC 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensym 9063 | . . 3 ⊢ (𝑋 ≈ 𝑌 → 𝑌 ≈ 𝑋) | |
2 | endom 9039 | . . 3 ⊢ (𝑌 ≈ 𝑋 → 𝑌 ≼ 𝑋) | |
3 | acndom2 10123 | . . 3 ⊢ (𝑌 ≼ 𝑋 → (𝑋 ∈ AC 𝐴 → 𝑌 ∈ AC 𝐴)) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝑋 ≈ 𝑌 → (𝑋 ∈ AC 𝐴 → 𝑌 ∈ AC 𝐴)) |
5 | endom 9039 | . . 3 ⊢ (𝑋 ≈ 𝑌 → 𝑋 ≼ 𝑌) | |
6 | acndom2 10123 | . . 3 ⊢ (𝑋 ≼ 𝑌 → (𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝑋 ≈ 𝑌 → (𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴)) |
8 | 4, 7 | impbid 212 | 1 ⊢ (𝑋 ≈ 𝑌 → (𝑋 ∈ AC 𝐴 ↔ 𝑌 ∈ AC 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5166 ≈ cen 9000 ≼ cdom 9001 AC wacn 10007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-acn 10011 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |