Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acnen2 | Structured version Visualization version GIF version |
Description: The class of sets with choice sequences of length 𝐴 is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acnen2 | ⊢ (𝑋 ≈ 𝑌 → (𝑋 ∈ AC 𝐴 ↔ 𝑌 ∈ AC 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensym 8856 | . . 3 ⊢ (𝑋 ≈ 𝑌 → 𝑌 ≈ 𝑋) | |
2 | endom 8832 | . . 3 ⊢ (𝑌 ≈ 𝑋 → 𝑌 ≼ 𝑋) | |
3 | acndom2 9903 | . . 3 ⊢ (𝑌 ≼ 𝑋 → (𝑋 ∈ AC 𝐴 → 𝑌 ∈ AC 𝐴)) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝑋 ≈ 𝑌 → (𝑋 ∈ AC 𝐴 → 𝑌 ∈ AC 𝐴)) |
5 | endom 8832 | . . 3 ⊢ (𝑋 ≈ 𝑌 → 𝑋 ≼ 𝑌) | |
6 | acndom2 9903 | . . 3 ⊢ (𝑋 ≼ 𝑌 → (𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝑋 ≈ 𝑌 → (𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴)) |
8 | 4, 7 | impbid 211 | 1 ⊢ (𝑋 ≈ 𝑌 → (𝑋 ∈ AC 𝐴 ↔ 𝑌 ∈ AC 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 class class class wbr 5089 ≈ cen 8793 ≼ cdom 8794 AC wacn 9787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-1st 7891 df-2nd 7892 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-acn 9791 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |