Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowth Structured version   Visualization version   GIF version

Theorem expgrowth 39140
Description: Exponential growth and decay model. The derivative of a function y of variable t equals a constant k times y itself, iff y equals some constant C times the exponential of kt. This theorem and expgrowthi 39138 illustrate one of the simplest and most crucial classes of differential equations, equations that relate functions to their derivatives.

Section 6.3 of [Strang] p. 242 calls y' = ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as the Malthusian growth model or exponential law, and C, k, and t correspond to initial population size, growth rate, and time respectively (https://en.wikipedia.org/wiki/Malthusian_growth_model); and in finance, the model appears in a similar role in continuous compounding with C as the initial amount of money. In exponential decay models, k is often expressed as the negative of a positive constant λ.

Here y' is given as (𝑆 D 𝑌), C as 𝑐, and ky as ((𝑆 × {𝐾}) ∘𝑓 · 𝑌). (𝑆 × {𝐾}) is the constant function that maps any real or complex input to k and 𝑓 · is multiplication as a function operation.

The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of [LarsonHostetlerEdwards] p. 375 (which notes " C is the initial value of y, and k is the proportionality constant. Exponential growth occurs when k > 0, and exponential decay occurs when k < 0."); its proof here closely follows the proof of y' = y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case.

Statements for this and expgrowthi 39138 formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015.)

Hypotheses
Ref Expression
expgrowth.s (𝜑𝑆 ∈ {ℝ, ℂ})
expgrowth.k (𝜑𝐾 ∈ ℂ)
expgrowth.y (𝜑𝑌:𝑆⟶ℂ)
expgrowth.dy (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
Assertion
Ref Expression
expgrowth (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Distinct variable groups:   𝑡,𝑐,𝐾   𝑆,𝑐,𝑡   𝑌,𝑐
Allowed substitution hints:   𝜑(𝑡,𝑐)   𝑌(𝑡)

Proof of Theorem expgrowth
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowth.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnelprrecn 10282 . . . . . . . . . . . . . . . . . 18 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℂ ∈ {ℝ, ℂ})
4 expgrowth.k . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ ℂ)
5 recnprss 23959 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
61, 5syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ⊆ ℂ)
76sseld 3760 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑢𝑆𝑢 ∈ ℂ))
8 mulcl 10273 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝐾 · 𝑢) ∈ ℂ)
94, 7, 8syl6an 674 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 → (𝐾 · 𝑢) ∈ ℂ))
109imp 395 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → (𝐾 · 𝑢) ∈ ℂ)
1110negcld 10633 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -(𝐾 · 𝑢) ∈ ℂ)
124negcld 10633 . . . . . . . . . . . . . . . . . 18 (𝜑 → -𝐾 ∈ ℂ)
1312adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -𝐾 ∈ ℂ)
14 efcl 15097 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
1514adantl 473 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
164adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → 𝐾 ∈ ℂ)
177imp 395 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 𝑢 ∈ ℂ)
18 ax-1cn 10247 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
1918a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 1 ∈ ℂ)
201dvmptid 24011 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆 D (𝑢𝑆𝑢)) = (𝑢𝑆 ↦ 1))
211, 17, 19, 20, 4dvmptcmul 24018 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆 ↦ (𝐾 · 1)))
224mulid1d 10311 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 · 1) = 𝐾)
2322mpteq2dv 4904 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 ↦ (𝐾 · 1)) = (𝑢𝑆𝐾))
2421, 23eqtrd 2799 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆𝐾))
251, 10, 16, 24dvmptneg 24020 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 D (𝑢𝑆 ↦ -(𝐾 · 𝑢))) = (𝑢𝑆 ↦ -𝐾))
26 dvef 24034 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = exp
27 eff 15096 . . . . . . . . . . . . . . . . . . . . . 22 exp:ℂ⟶ℂ
28 ffn 6223 . . . . . . . . . . . . . . . . . . . . . 22 (exp:ℂ⟶ℂ → exp Fn ℂ)
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 exp Fn ℂ
30 dffn5 6430 . . . . . . . . . . . . . . . . . . . . 21 (exp Fn ℂ ↔ exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3129, 30mpbi 221 . . . . . . . . . . . . . . . . . . . 20 exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3231oveq2i 6853 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3326, 32, 313eqtr3i 2795 . . . . . . . . . . . . . . . . . 18 (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3433a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
35 fveq2 6375 . . . . . . . . . . . . . . . . 17 (𝑦 = -(𝐾 · 𝑢) → (exp‘𝑦) = (exp‘-(𝐾 · 𝑢)))
361, 3, 11, 13, 15, 15, 25, 34, 35, 35dvmptco 24026 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
3736oveq2d 6858 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌𝑓 · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
38 expgrowth.y . . . . . . . . . . . . . . . 16 (𝜑𝑌:𝑆⟶ℂ)
39 efcl 15097 . . . . . . . . . . . . . . . . . . . 20 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4011, 39syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4140, 13mulcld 10314 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → ((exp‘-(𝐾 · 𝑢)) · -𝐾) ∈ ℂ)
4241fmpttd 6575 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ)
4336feq1d 6208 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ ↔ (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ))
4442, 43mpbird 248 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
45 mulcom 10275 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
4645adantl 473 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
471, 38, 44, 46caofcom 7127 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌𝑓 · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 · 𝑌))
4837, 47eqtr3d 2801 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 · 𝑌))
4948oveq2d 6858 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 · 𝑌)))
50 fconst6g 6276 . . . . . . . . . . . . . . . . . 18 (-𝐾 ∈ ℂ → (𝑆 × {-𝐾}):𝑆⟶ℂ)
5112, 50syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}):𝑆⟶ℂ)
5240fmpttd 6575 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)
531, 51, 52, 46caofcom 7127 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘𝑓 · (𝑆 × {-𝐾})))
54 eqidd 2766 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))
55 fconstmpt 5333 . . . . . . . . . . . . . . . . . 18 (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾)
5655a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾))
571, 40, 13, 54, 56offval2 7112 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘𝑓 · (𝑆 × {-𝐾})) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
5853, 57eqtrd 2799 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
5958oveq2d 6858 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
6059oveq2d 6858 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))))
61 expgrowth.dy . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
6236dmeqd 5494 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
63 eqid 2765 . . . . . . . . . . . . . . . 16 (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))
6463, 41dmmptd 6202 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = 𝑆)
6562, 64eqtrd 2799 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑆)
661, 38, 52, 61, 65dvmulf 23997 . . . . . . . . . . . . 13 (𝜑 → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 · 𝑌)))
6749, 60, 663eqtr4rd 2810 . . . . . . . . . . . 12 (𝜑 → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
68 ofmul12 39130 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ) ∧ ((𝑆 × {-𝐾}):𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)) → (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
691, 38, 51, 52, 68syl22anc 867 . . . . . . . . . . . . 13 (𝜑 → (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7069oveq2d 6858 . . . . . . . . . . . 12 (𝜑 → (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (𝑌𝑓 · ((𝑆 × {-𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7167, 70eqtrd 2799 . . . . . . . . . . 11 (𝜑 → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
72 oveq1 6849 . . . . . . . . . . . 12 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) → ((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
7372oveq1d 6857 . . . . . . . . . . 11 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) → (((𝑆 D 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7471, 73sylan9eq 2819 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
75 mulass 10277 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
7675adantl 473 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
771, 51, 38, 52, 76caofass 7129 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7877oveq2d 6858 . . . . . . . . . . . 12 (𝜑 → ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7978eqeq2d 2775 . . . . . . . . . . 11 (𝜑 → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8079adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8174, 80mpbird 248 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
82 mulcl 10273 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
8382adantl 473 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
84 fconst6g 6276 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → (𝑆 × {𝐾}):𝑆⟶ℂ)
854, 84syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑆 × {𝐾}):𝑆⟶ℂ)
86 inidm 3982 . . . . . . . . . . . . 13 (𝑆𝑆) = 𝑆
8783, 85, 38, 1, 1, 86off 7110 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ)
8883, 51, 38, 1, 1, 86off 7110 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ)
89 adddir 10284 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
9089adantl 473 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
911, 52, 87, 88, 90caofdir 7132 . . . . . . . . . . 11 (𝜑 → ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
9291eqeq2d 2775 . . . . . . . . . 10 (𝜑 → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9392adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 + (((𝑆 × {-𝐾}) ∘𝑓 · 𝑌) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9481, 93mpbird 248 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
95 ofnegsub 11272 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ ∧ ((𝑆 × {𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))) = (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 − ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)))
961, 87, 87, 95syl3anc 1490 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))) = (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 − ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)))
97 neg1cn 11393 . . . . . . . . . . . . . . . . 17 -1 ∈ ℂ
9897fconst6 6277 . . . . . . . . . . . . . . . 16 (𝑆 × {-1}):𝑆⟶ℂ
9998a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 × {-1}):𝑆⟶ℂ)
1001, 99, 85, 38, 76caofass 7129 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘𝑓 · (𝑆 × {𝐾})) ∘𝑓 · 𝑌) = ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)))
10197a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → -1 ∈ ℂ)
1021, 101, 4ofc12 7120 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-1}) ∘𝑓 · (𝑆 × {𝐾})) = (𝑆 × {(-1 · 𝐾)}))
1034mulm1d 10736 . . . . . . . . . . . . . . . . . 18 (𝜑 → (-1 · 𝐾) = -𝐾)
104103sneqd 4346 . . . . . . . . . . . . . . . . 17 (𝜑 → {(-1 · 𝐾)} = {-𝐾})
105104xpeq2d 5307 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 × {(-1 · 𝐾)}) = (𝑆 × {-𝐾}))
106102, 105eqtrd 2799 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-1}) ∘𝑓 · (𝑆 × {𝐾})) = (𝑆 × {-𝐾}))
107106oveq1d 6857 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘𝑓 · (𝑆 × {𝐾})) ∘𝑓 · 𝑌) = ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌))
108100, 107eqtr3d 2801 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) = ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌))
109108oveq2d 6858 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-1}) ∘𝑓 · ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))) = (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)))
110 ofsubid 39129 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘𝑓 · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 − ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) = (𝑆 × {0}))
1111, 87, 110syl2anc 579 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 − ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) = (𝑆 × {0}))
11296, 109, 1113eqtr3d 2807 . . . . . . . . . . 11 (𝜑 → (((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) = (𝑆 × {0}))
113112oveq1d 6857 . . . . . . . . . 10 (𝜑 → ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
114113eqeq2d 2775 . . . . . . . . 9 (𝜑 → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
115114adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ∘𝑓 + ((𝑆 × {-𝐾}) ∘𝑓 · 𝑌)) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
11694, 115mpbid 223 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
117 0cnd 10286 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
118 mul02 10468 . . . . . . . . . 10 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
119118adantl 473 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
1201, 52, 117, 117, 119caofid2 7126 . . . . . . . 8 (𝜑 → ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
121120adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 × {0}) ∘𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
122116, 121eqtrd 2799 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}))
1231adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → 𝑆 ∈ {ℝ, ℂ})
12483, 38, 52, 1, 1, 86off 7110 . . . . . . . 8 (𝜑 → (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
125124adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
126122dmeqd 5494 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → dom (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = dom (𝑆 × {0}))
127 0cn 10285 . . . . . . . . . 10 0 ∈ ℂ
128127fconst6 6277 . . . . . . . . 9 (𝑆 × {0}):𝑆⟶ℂ
129128fdmi 6233 . . . . . . . 8 dom (𝑆 × {0}) = 𝑆
130126, 129syl6eq 2815 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → dom (𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = 𝑆)
131123, 125, 130dvconstbi 39139 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ((𝑆 D (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}) ↔ ∃𝑥 ∈ ℂ (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥})))
132122, 131mpbid 223 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ∃𝑥 ∈ ℂ (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}))
133 oveq1 6849 . . . . . . . . . 10 ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
134 efne0 15111 . . . . . . . . . . . . . . 15 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ≠ 0)
135 eldifsn 4472 . . . . . . . . . . . . . . 15 ((exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}) ↔ ((exp‘-(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘-(𝐾 · 𝑢)) ≠ 0))
13639, 134, 135sylanbrc 578 . . . . . . . . . . . . . 14 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
13711, 136syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
138137fmpttd 6575 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0}))
139 ofdivcan4 39132 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0})) → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
1401, 38, 138, 139syl3anc 1490 . . . . . . . . . . 11 (𝜑 → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
141140eqeq1d 2767 . . . . . . . . . 10 (𝜑 → (((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
142133, 141syl5ib 235 . . . . . . . . 9 (𝜑 → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
143142adantr 472 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
144 vex 3353 . . . . . . . . . . . . 13 𝑥 ∈ V
145144a1i 11 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → 𝑥 ∈ V)
146 ovexd 6876 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → (1 / (exp‘(𝐾 · 𝑢))) ∈ V)
147 fconstmpt 5333 . . . . . . . . . . . . 13 (𝑆 × {𝑥}) = (𝑢𝑆𝑥)
148147a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑆 × {𝑥}) = (𝑢𝑆𝑥))
149 efneg 15112 . . . . . . . . . . . . . 14 ((𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
15010, 149syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
151150mpteq2dva 4903 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (1 / (exp‘(𝐾 · 𝑢)))))
1521, 145, 146, 148, 151offval2 7112 . . . . . . . . . . 11 (𝜑 → ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
153152adantr 472 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
154 efcl 15097 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
155 efne0 15111 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ≠ 0)
156154, 155jca 507 . . . . . . . . . . . . . . . 16 ((𝐾 · 𝑢) ∈ ℂ → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
15710, 156syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑆) → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
158 ax-1ne0 10258 . . . . . . . . . . . . . . . . 17 1 ≠ 0
15918, 158pm3.2i 462 . . . . . . . . . . . . . . . 16 (1 ∈ ℂ ∧ 1 ≠ 0)
160 divdiv2 10991 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0) ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
161159, 160mp3an2 1573 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
162157, 161sylan2 586 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
16310, 154syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑆) → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
164 mulcl 10273 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ∈ ℂ) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
165163, 164sylan2 586 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
166165div1d 11047 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1) = (𝑥 · (exp‘(𝐾 · 𝑢))))
167162, 166eqtrd 2799 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
168167ancoms 450 . . . . . . . . . . . 12 (((𝜑𝑢𝑆) ∧ 𝑥 ∈ ℂ) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
169168an32s 642 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝑆) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
170169mpteq2dva 4903 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
171153, 170eqtrd 2799 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
172171eqeq2d 2775 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑌 = ((𝑆 × {𝑥}) ∘𝑓 / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
173143, 172sylibd 230 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
174173reximdva 3163 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℂ (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
175174adantr 472 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → (∃𝑥 ∈ ℂ (𝑌𝑓 · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
176132, 175mpd 15 . . . 4 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
177176ex 401 . . 3 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1781adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑆 ∈ {ℝ, ℂ})
1794adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝐾 ∈ ℂ)
180 simprl 787 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑥 ∈ ℂ)
181 eqid 2765 . . . . . . 7 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))
182178, 179, 180, 181expgrowthi 39138 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1831823impb 1143 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
184 oveq2 6850 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
185 oveq2 6850 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
186184, 185eqeq12d 2780 . . . . . 6 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
1871863ad2ant3 1165 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘𝑓 · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
188183, 187mpbird 248 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌))
189188rexlimdv3a 3180 . . 3 (𝜑 → (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌)))
190177, 189impbid 203 . 2 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
191 oveq2 6850 . . . . . . . 8 (𝑢 = 𝑡 → (𝐾 · 𝑢) = (𝐾 · 𝑡))
192191fveq2d 6379 . . . . . . 7 (𝑢 = 𝑡 → (exp‘(𝐾 · 𝑢)) = (exp‘(𝐾 · 𝑡)))
193192oveq2d 6858 . . . . . 6 (𝑢 = 𝑡 → (𝑥 · (exp‘(𝐾 · 𝑢))) = (𝑥 · (exp‘(𝐾 · 𝑡))))
194193cbvmptv 4909 . . . . 5 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡))))
195 oveq1 6849 . . . . . 6 (𝑥 = 𝑐 → (𝑥 · (exp‘(𝐾 · 𝑡))) = (𝑐 · (exp‘(𝐾 · 𝑡))))
196195mpteq2dv 4904 . . . . 5 (𝑥 = 𝑐 → (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
197194, 196syl5eq 2811 . . . 4 (𝑥 = 𝑐 → (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
198197eqeq2d 2775 . . 3 (𝑥 = 𝑐 → (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
199198cbvrexv 3320 . 2 (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
200190, 199syl6bb 278 1 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘𝑓 · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056  Vcvv 3350  cdif 3729  wss 3732  {csn 4334  {cpr 4336  cmpt 4888   × cxp 5275  dom cdm 5277   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑓 cof 7093  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  cmin 10520  -cneg 10521   / cdiv 10938  expce 15076   D cdv 23918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14094  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-limsup 14489  df-clim 14506  df-rlim 14507  df-sum 14704  df-ef 15082  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator