Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowth Structured version   Visualization version   GIF version

Theorem expgrowth 44297
Description: Exponential growth and decay model. The derivative of a function y of variable t equals a constant k times y itself, iff y equals some constant C times the exponential of kt. This theorem and expgrowthi 44295 illustrate one of the simplest and most crucial classes of differential equations, equations that relate functions to their derivatives.

Section 6.3 of [Strang] p. 242 calls y' = ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as the Malthusian growth model or exponential law, and C, k, and t correspond to initial population size, growth rate, and time respectively (https://en.wikipedia.org/wiki/Malthusian_growth_model 44295); and in finance, the model appears in a similar role in continuous compounding with C as the initial amount of money. In exponential decay models, k is often expressed as the negative of a positive constant λ.

Here y' is given as (𝑆 D 𝑌), C as 𝑐, and ky as ((𝑆 × {𝐾}) ∘f · 𝑌). (𝑆 × {𝐾}) is the constant function that maps any real or complex input to k and f · is multiplication as a function operation.

The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf 44295 pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of [LarsonHostetlerEdwards] p. 375 (which notes " C is the initial value of y, and k is the proportionality constant. Exponential growth occurs when k > 0, and exponential decay occurs when k < 0."); its proof here closely follows the proof of y' = y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case 44295.

Statements for this and expgrowthi 44295 formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015.)

Hypotheses
Ref Expression
expgrowth.s (𝜑𝑆 ∈ {ℝ, ℂ})
expgrowth.k (𝜑𝐾 ∈ ℂ)
expgrowth.y (𝜑𝑌:𝑆⟶ℂ)
expgrowth.dy (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
Assertion
Ref Expression
expgrowth (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Distinct variable groups:   𝑡,𝑐,𝐾   𝑆,𝑐,𝑡   𝑌,𝑐
Allowed substitution hints:   𝜑(𝑡,𝑐)   𝑌(𝑡)

Proof of Theorem expgrowth
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowth.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnelprrecn 11137 . . . . . . . . . . . . . . . . . 18 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℂ ∈ {ℝ, ℂ})
4 expgrowth.k . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ ℂ)
5 recnprss 25781 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
61, 5syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ⊆ ℂ)
76sseld 3942 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑢𝑆𝑢 ∈ ℂ))
8 mulcl 11128 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝐾 · 𝑢) ∈ ℂ)
94, 7, 8syl6an 684 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 → (𝐾 · 𝑢) ∈ ℂ))
109imp 406 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → (𝐾 · 𝑢) ∈ ℂ)
1110negcld 11496 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -(𝐾 · 𝑢) ∈ ℂ)
124negcld 11496 . . . . . . . . . . . . . . . . . 18 (𝜑 → -𝐾 ∈ ℂ)
1312adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -𝐾 ∈ ℂ)
14 efcl 16024 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
1514adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
164adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → 𝐾 ∈ ℂ)
177imp 406 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 𝑢 ∈ ℂ)
18 ax-1cn 11102 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
1918a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 1 ∈ ℂ)
201dvmptid 25837 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆 D (𝑢𝑆𝑢)) = (𝑢𝑆 ↦ 1))
211, 17, 19, 20, 4dvmptcmul 25844 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆 ↦ (𝐾 · 1)))
224mulridd 11167 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 · 1) = 𝐾)
2322mpteq2dv 5196 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 ↦ (𝐾 · 1)) = (𝑢𝑆𝐾))
2421, 23eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆𝐾))
251, 10, 16, 24dvmptneg 25846 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 D (𝑢𝑆 ↦ -(𝐾 · 𝑢))) = (𝑢𝑆 ↦ -𝐾))
26 dvef 25860 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = exp
27 eff 16023 . . . . . . . . . . . . . . . . . . . . . 22 exp:ℂ⟶ℂ
28 ffn 6670 . . . . . . . . . . . . . . . . . . . . . 22 (exp:ℂ⟶ℂ → exp Fn ℂ)
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 exp Fn ℂ
30 dffn5 6901 . . . . . . . . . . . . . . . . . . . . 21 (exp Fn ℂ ↔ exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3129, 30mpbi 230 . . . . . . . . . . . . . . . . . . . 20 exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3231oveq2i 7380 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3326, 32, 313eqtr3i 2760 . . . . . . . . . . . . . . . . . 18 (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3433a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
35 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑦 = -(𝐾 · 𝑢) → (exp‘𝑦) = (exp‘-(𝐾 · 𝑢)))
361, 3, 11, 13, 15, 15, 25, 34, 35, 35dvmptco 25852 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
3736oveq2d 7385 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌f · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
38 expgrowth.y . . . . . . . . . . . . . . . 16 (𝜑𝑌:𝑆⟶ℂ)
39 efcl 16024 . . . . . . . . . . . . . . . . . . . 20 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4011, 39syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4140, 13mulcld 11170 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → ((exp‘-(𝐾 · 𝑢)) · -𝐾) ∈ ℂ)
4241fmpttd 7069 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ)
4336feq1d 6652 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ ↔ (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ))
4442, 43mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
45 mulcom 11130 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
4645adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
471, 38, 44, 46caofcom 7670 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌f · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌))
4837, 47eqtr3d 2766 . . . . . . . . . . . . . 14 (𝜑 → (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌))
4948oveq2d 7385 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌)))
50 fconst6g 6731 . . . . . . . . . . . . . . . . . 18 (-𝐾 ∈ ℂ → (𝑆 × {-𝐾}):𝑆⟶ℂ)
5112, 50syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}):𝑆⟶ℂ)
5240fmpttd 7069 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)
531, 51, 52, 46caofcom 7670 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘f · (𝑆 × {-𝐾})))
54 eqidd 2730 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))
55 fconstmpt 5693 . . . . . . . . . . . . . . . . . 18 (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾)
5655a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾))
571, 40, 13, 54, 56offval2 7653 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘f · (𝑆 × {-𝐾})) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
5853, 57eqtrd 2764 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
5958oveq2d 7385 . . . . . . . . . . . . . 14 (𝜑 → (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
6059oveq2d 7385 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))))
61 expgrowth.dy . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
6236dmeqd 5859 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
63 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))
6463, 41dmmptd 6645 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = 𝑆)
6562, 64eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑆)
661, 38, 52, 61, 65dvmulf 25822 . . . . . . . . . . . . 13 (𝜑 → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌)))
6749, 60, 663eqtr4rd 2775 . . . . . . . . . . . 12 (𝜑 → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
68 ofmul12 44287 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ) ∧ ((𝑆 × {-𝐾}):𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)) → (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
691, 38, 51, 52, 68syl22anc 838 . . . . . . . . . . . . 13 (𝜑 → (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7069oveq2d 7385 . . . . . . . . . . . 12 (𝜑 → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7167, 70eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
72 oveq1 7376 . . . . . . . . . . . 12 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) → ((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
7372oveq1d 7384 . . . . . . . . . . 11 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7471, 73sylan9eq 2784 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
75 mulass 11132 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
7675adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
771, 51, 38, 52, 76caofass 7673 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7877oveq2d 7385 . . . . . . . . . . . 12 (𝜑 → ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7978eqeq2d 2740 . . . . . . . . . . 11 (𝜑 → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8079adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8174, 80mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
82 mulcl 11128 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
8382adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
84 fconst6g 6731 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → (𝑆 × {𝐾}):𝑆⟶ℂ)
854, 84syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑆 × {𝐾}):𝑆⟶ℂ)
86 inidm 4186 . . . . . . . . . . . . 13 (𝑆𝑆) = 𝑆
8783, 85, 38, 1, 1, 86off 7651 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ)
8883, 51, 38, 1, 1, 86off 7651 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {-𝐾}) ∘f · 𝑌):𝑆⟶ℂ)
89 adddir 11141 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
9089adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
911, 52, 87, 88, 90caofdir 7676 . . . . . . . . . . 11 (𝜑 → ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
9291eqeq2d 2740 . . . . . . . . . 10 (𝜑 → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9392adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9481, 93mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
95 ofnegsub 12160 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ ∧ ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)))
961, 87, 87, 95syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)))
97 neg1cn 12147 . . . . . . . . . . . . . . . . 17 -1 ∈ ℂ
9897fconst6 6732 . . . . . . . . . . . . . . . 16 (𝑆 × {-1}):𝑆⟶ℂ
9998a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 × {-1}):𝑆⟶ℂ)
1001, 99, 85, 38, 76caofass 7673 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) ∘f · 𝑌) = ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌)))
10197a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → -1 ∈ ℂ)
1021, 101, 4ofc12 7663 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) = (𝑆 × {(-1 · 𝐾)}))
1034mulm1d 11606 . . . . . . . . . . . . . . . . . 18 (𝜑 → (-1 · 𝐾) = -𝐾)
104103sneqd 4597 . . . . . . . . . . . . . . . . 17 (𝜑 → {(-1 · 𝐾)} = {-𝐾})
105104xpeq2d 5661 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 × {(-1 · 𝐾)}) = (𝑆 × {-𝐾}))
106102, 105eqtrd 2764 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) = (𝑆 × {-𝐾}))
107106oveq1d 7384 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) ∘f · 𝑌) = ((𝑆 × {-𝐾}) ∘f · 𝑌))
108100, 107eqtr3d 2766 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌)) = ((𝑆 × {-𝐾}) ∘f · 𝑌))
109108oveq2d 7385 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)))
110 ofsubid 44286 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)) = (𝑆 × {0}))
1111, 87, 110syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)) = (𝑆 × {0}))
11296, 109, 1113eqtr3d 2772 . . . . . . . . . . 11 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) = (𝑆 × {0}))
113112oveq1d 7384 . . . . . . . . . 10 (𝜑 → ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
114113eqeq2d 2740 . . . . . . . . 9 (𝜑 → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
115114adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
11694, 115mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
117 0cnd 11143 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
118 mul02 11328 . . . . . . . . . 10 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
119118adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
1201, 52, 117, 117, 119caofid2 7669 . . . . . . . 8 (𝜑 → ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
121120adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
122116, 121eqtrd 2764 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}))
1231adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → 𝑆 ∈ {ℝ, ℂ})
12483, 38, 52, 1, 1, 86off 7651 . . . . . . . 8 (𝜑 → (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
125124adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
126122dmeqd 5859 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → dom (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = dom (𝑆 × {0}))
127 0cn 11142 . . . . . . . . . 10 0 ∈ ℂ
128127fconst6 6732 . . . . . . . . 9 (𝑆 × {0}):𝑆⟶ℂ
129128fdmi 6681 . . . . . . . 8 dom (𝑆 × {0}) = 𝑆
130126, 129eqtrdi 2780 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → dom (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = 𝑆)
131123, 125, 130dvconstbi 44296 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}) ↔ ∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥})))
132122, 131mpbid 232 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}))
133 oveq1 7376 . . . . . . . . . 10 ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
134 efne0 16040 . . . . . . . . . . . . . . 15 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ≠ 0)
135 eldifsn 4746 . . . . . . . . . . . . . . 15 ((exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}) ↔ ((exp‘-(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘-(𝐾 · 𝑢)) ≠ 0))
13639, 134, 135sylanbrc 583 . . . . . . . . . . . . . 14 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
13711, 136syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
138137fmpttd 7069 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0}))
139 ofdivcan4 44289 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0})) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
1401, 38, 138, 139syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
141140eqeq1d 2731 . . . . . . . . . 10 (𝜑 → (((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
142133, 141imbitrid 244 . . . . . . . . 9 (𝜑 → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
143142adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
144 vex 3448 . . . . . . . . . . . . 13 𝑥 ∈ V
145144a1i 11 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → 𝑥 ∈ V)
146 ovexd 7404 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → (1 / (exp‘(𝐾 · 𝑢))) ∈ V)
147 fconstmpt 5693 . . . . . . . . . . . . 13 (𝑆 × {𝑥}) = (𝑢𝑆𝑥)
148147a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑆 × {𝑥}) = (𝑢𝑆𝑥))
149 efneg 16042 . . . . . . . . . . . . . 14 ((𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
15010, 149syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
151150mpteq2dva 5195 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (1 / (exp‘(𝐾 · 𝑢)))))
1521, 145, 146, 148, 151offval2 7653 . . . . . . . . . . 11 (𝜑 → ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
153152adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
154 efcl 16024 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
155 efne0 16040 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ≠ 0)
156154, 155jca 511 . . . . . . . . . . . . . . . 16 ((𝐾 · 𝑢) ∈ ℂ → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
15710, 156syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑆) → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
158 ax-1ne0 11113 . . . . . . . . . . . . . . . . 17 1 ≠ 0
15918, 158pm3.2i 470 . . . . . . . . . . . . . . . 16 (1 ∈ ℂ ∧ 1 ≠ 0)
160 divdiv2 11870 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0) ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
161159, 160mp3an2 1451 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
162157, 161sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
16310, 154syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑆) → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
164 mulcl 11128 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ∈ ℂ) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
165163, 164sylan2 593 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
166165div1d 11926 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1) = (𝑥 · (exp‘(𝐾 · 𝑢))))
167162, 166eqtrd 2764 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
168167ancoms 458 . . . . . . . . . . . 12 (((𝜑𝑢𝑆) ∧ 𝑥 ∈ ℂ) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
169168an32s 652 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝑆) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
170169mpteq2dva 5195 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
171153, 170eqtrd 2764 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
172171eqeq2d 2740 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
173143, 172sylibd 239 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
174173reximdva 3146 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
175174adantr 480 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
176132, 175mpd 15 . . . 4 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
177176ex 412 . . 3 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1781adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑆 ∈ {ℝ, ℂ})
1794adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝐾 ∈ ℂ)
180 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑥 ∈ ℂ)
181 eqid 2729 . . . . . . 7 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))
182178, 179, 180, 181expgrowthi 44295 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1831823impb 1114 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
184 oveq2 7377 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
185 oveq2 7377 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 × {𝐾}) ∘f · 𝑌) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
186184, 185eqeq12d 2745 . . . . . 6 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
1871863ad2ant3 1135 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
188183, 187mpbird 257 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌))
189188rexlimdv3a 3138 . . 3 (𝜑 → (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)))
190177, 189impbid 212 . 2 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
191 oveq2 7377 . . . . . . . 8 (𝑢 = 𝑡 → (𝐾 · 𝑢) = (𝐾 · 𝑡))
192191fveq2d 6844 . . . . . . 7 (𝑢 = 𝑡 → (exp‘(𝐾 · 𝑢)) = (exp‘(𝐾 · 𝑡)))
193192oveq2d 7385 . . . . . 6 (𝑢 = 𝑡 → (𝑥 · (exp‘(𝐾 · 𝑢))) = (𝑥 · (exp‘(𝐾 · 𝑡))))
194193cbvmptv 5206 . . . . 5 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡))))
195 oveq1 7376 . . . . . 6 (𝑥 = 𝑐 → (𝑥 · (exp‘(𝐾 · 𝑡))) = (𝑐 · (exp‘(𝐾 · 𝑡))))
196195mpteq2dv 5196 . . . . 5 (𝑥 = 𝑐 → (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
197194, 196eqtrid 2776 . . . 4 (𝑥 = 𝑐 → (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
198197eqeq2d 2740 . . 3 (𝑥 = 𝑐 → (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
199198cbvrexvw 3214 . 2 (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
200190, 199bitrdi 287 1 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3444  cdif 3908  wss 3911  {csn 4585  {cpr 4587  cmpt 5183   × cxp 5629  dom cdm 5631   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  -cneg 11382   / cdiv 11811  expce 16003   D cdv 25740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator