Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowth Structured version   Visualization version   GIF version

Theorem expgrowth 41842
Description: Exponential growth and decay model. The derivative of a function y of variable t equals a constant k times y itself, iff y equals some constant C times the exponential of kt. This theorem and expgrowthi 41840 illustrate one of the simplest and most crucial classes of differential equations, equations that relate functions to their derivatives.

Section 6.3 of [Strang] p. 242 calls y' = ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as the Malthusian growth model or exponential law, and C, k, and t correspond to initial population size, growth rate, and time respectively (https://en.wikipedia.org/wiki/Malthusian_growth_model 41840); and in finance, the model appears in a similar role in continuous compounding with C as the initial amount of money. In exponential decay models, k is often expressed as the negative of a positive constant λ.

Here y' is given as (𝑆 D 𝑌), C as 𝑐, and ky as ((𝑆 × {𝐾}) ∘f · 𝑌). (𝑆 × {𝐾}) is the constant function that maps any real or complex input to k and f · is multiplication as a function operation.

The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf 41840 pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of [LarsonHostetlerEdwards] p. 375 (which notes " C is the initial value of y, and k is the proportionality constant. Exponential growth occurs when k > 0, and exponential decay occurs when k < 0."); its proof here closely follows the proof of y' = y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case 41840.

Statements for this and expgrowthi 41840 formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015.)

Hypotheses
Ref Expression
expgrowth.s (𝜑𝑆 ∈ {ℝ, ℂ})
expgrowth.k (𝜑𝐾 ∈ ℂ)
expgrowth.y (𝜑𝑌:𝑆⟶ℂ)
expgrowth.dy (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
Assertion
Ref Expression
expgrowth (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Distinct variable groups:   𝑡,𝑐,𝐾   𝑆,𝑐,𝑡   𝑌,𝑐
Allowed substitution hints:   𝜑(𝑡,𝑐)   𝑌(𝑡)

Proof of Theorem expgrowth
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowth.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnelprrecn 10895 . . . . . . . . . . . . . . . . . 18 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℂ ∈ {ℝ, ℂ})
4 expgrowth.k . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ ℂ)
5 recnprss 24973 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
61, 5syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ⊆ ℂ)
76sseld 3916 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑢𝑆𝑢 ∈ ℂ))
8 mulcl 10886 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝐾 · 𝑢) ∈ ℂ)
94, 7, 8syl6an 680 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 → (𝐾 · 𝑢) ∈ ℂ))
109imp 406 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → (𝐾 · 𝑢) ∈ ℂ)
1110negcld 11249 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -(𝐾 · 𝑢) ∈ ℂ)
124negcld 11249 . . . . . . . . . . . . . . . . . 18 (𝜑 → -𝐾 ∈ ℂ)
1312adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -𝐾 ∈ ℂ)
14 efcl 15720 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
1514adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
164adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → 𝐾 ∈ ℂ)
177imp 406 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 𝑢 ∈ ℂ)
18 ax-1cn 10860 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
1918a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 1 ∈ ℂ)
201dvmptid 25026 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆 D (𝑢𝑆𝑢)) = (𝑢𝑆 ↦ 1))
211, 17, 19, 20, 4dvmptcmul 25033 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆 ↦ (𝐾 · 1)))
224mulid1d 10923 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 · 1) = 𝐾)
2322mpteq2dv 5172 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 ↦ (𝐾 · 1)) = (𝑢𝑆𝐾))
2421, 23eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆𝐾))
251, 10, 16, 24dvmptneg 25035 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 D (𝑢𝑆 ↦ -(𝐾 · 𝑢))) = (𝑢𝑆 ↦ -𝐾))
26 dvef 25049 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = exp
27 eff 15719 . . . . . . . . . . . . . . . . . . . . . 22 exp:ℂ⟶ℂ
28 ffn 6584 . . . . . . . . . . . . . . . . . . . . . 22 (exp:ℂ⟶ℂ → exp Fn ℂ)
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 exp Fn ℂ
30 dffn5 6810 . . . . . . . . . . . . . . . . . . . . 21 (exp Fn ℂ ↔ exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3129, 30mpbi 229 . . . . . . . . . . . . . . . . . . . 20 exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3231oveq2i 7266 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3326, 32, 313eqtr3i 2774 . . . . . . . . . . . . . . . . . 18 (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3433a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
35 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑦 = -(𝐾 · 𝑢) → (exp‘𝑦) = (exp‘-(𝐾 · 𝑢)))
361, 3, 11, 13, 15, 15, 25, 34, 35, 35dvmptco 25041 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
3736oveq2d 7271 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌f · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
38 expgrowth.y . . . . . . . . . . . . . . . 16 (𝜑𝑌:𝑆⟶ℂ)
39 efcl 15720 . . . . . . . . . . . . . . . . . . . 20 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4011, 39syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4140, 13mulcld 10926 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → ((exp‘-(𝐾 · 𝑢)) · -𝐾) ∈ ℂ)
4241fmpttd 6971 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ)
4336feq1d 6569 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ ↔ (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ))
4442, 43mpbird 256 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
45 mulcom 10888 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
4645adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
471, 38, 44, 46caofcom 7546 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌f · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌))
4837, 47eqtr3d 2780 . . . . . . . . . . . . . 14 (𝜑 → (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌))
4948oveq2d 7271 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌)))
50 fconst6g 6647 . . . . . . . . . . . . . . . . . 18 (-𝐾 ∈ ℂ → (𝑆 × {-𝐾}):𝑆⟶ℂ)
5112, 50syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}):𝑆⟶ℂ)
5240fmpttd 6971 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)
531, 51, 52, 46caofcom 7546 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘f · (𝑆 × {-𝐾})))
54 eqidd 2739 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))
55 fconstmpt 5640 . . . . . . . . . . . . . . . . . 18 (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾)
5655a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾))
571, 40, 13, 54, 56offval2 7531 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘f · (𝑆 × {-𝐾})) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
5853, 57eqtrd 2778 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
5958oveq2d 7271 . . . . . . . . . . . . . 14 (𝜑 → (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
6059oveq2d 7271 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))))
61 expgrowth.dy . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
6236dmeqd 5803 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
63 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))
6463, 41dmmptd 6562 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = 𝑆)
6562, 64eqtrd 2778 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑆)
661, 38, 52, 61, 65dvmulf 25012 . . . . . . . . . . . . 13 (𝜑 → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌)))
6749, 60, 663eqtr4rd 2789 . . . . . . . . . . . 12 (𝜑 → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
68 ofmul12 41832 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ) ∧ ((𝑆 × {-𝐾}):𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)) → (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
691, 38, 51, 52, 68syl22anc 835 . . . . . . . . . . . . 13 (𝜑 → (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7069oveq2d 7271 . . . . . . . . . . . 12 (𝜑 → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7167, 70eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
72 oveq1 7262 . . . . . . . . . . . 12 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) → ((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
7372oveq1d 7270 . . . . . . . . . . 11 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7471, 73sylan9eq 2799 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
75 mulass 10890 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
7675adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
771, 51, 38, 52, 76caofass 7548 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7877oveq2d 7271 . . . . . . . . . . . 12 (𝜑 → ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7978eqeq2d 2749 . . . . . . . . . . 11 (𝜑 → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8079adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8174, 80mpbird 256 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
82 mulcl 10886 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
8382adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
84 fconst6g 6647 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → (𝑆 × {𝐾}):𝑆⟶ℂ)
854, 84syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑆 × {𝐾}):𝑆⟶ℂ)
86 inidm 4149 . . . . . . . . . . . . 13 (𝑆𝑆) = 𝑆
8783, 85, 38, 1, 1, 86off 7529 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ)
8883, 51, 38, 1, 1, 86off 7529 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {-𝐾}) ∘f · 𝑌):𝑆⟶ℂ)
89 adddir 10897 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
9089adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
911, 52, 87, 88, 90caofdir 7551 . . . . . . . . . . 11 (𝜑 → ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
9291eqeq2d 2749 . . . . . . . . . 10 (𝜑 → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9392adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9481, 93mpbird 256 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
95 ofnegsub 11901 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ ∧ ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)))
961, 87, 87, 95syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)))
97 neg1cn 12017 . . . . . . . . . . . . . . . . 17 -1 ∈ ℂ
9897fconst6 6648 . . . . . . . . . . . . . . . 16 (𝑆 × {-1}):𝑆⟶ℂ
9998a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 × {-1}):𝑆⟶ℂ)
1001, 99, 85, 38, 76caofass 7548 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) ∘f · 𝑌) = ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌)))
10197a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → -1 ∈ ℂ)
1021, 101, 4ofc12 7539 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) = (𝑆 × {(-1 · 𝐾)}))
1034mulm1d 11357 . . . . . . . . . . . . . . . . . 18 (𝜑 → (-1 · 𝐾) = -𝐾)
104103sneqd 4570 . . . . . . . . . . . . . . . . 17 (𝜑 → {(-1 · 𝐾)} = {-𝐾})
105104xpeq2d 5610 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 × {(-1 · 𝐾)}) = (𝑆 × {-𝐾}))
106102, 105eqtrd 2778 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) = (𝑆 × {-𝐾}))
107106oveq1d 7270 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) ∘f · 𝑌) = ((𝑆 × {-𝐾}) ∘f · 𝑌))
108100, 107eqtr3d 2780 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌)) = ((𝑆 × {-𝐾}) ∘f · 𝑌))
109108oveq2d 7271 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)))
110 ofsubid 41831 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)) = (𝑆 × {0}))
1111, 87, 110syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)) = (𝑆 × {0}))
11296, 109, 1113eqtr3d 2786 . . . . . . . . . . 11 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) = (𝑆 × {0}))
113112oveq1d 7270 . . . . . . . . . 10 (𝜑 → ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
114113eqeq2d 2749 . . . . . . . . 9 (𝜑 → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
115114adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
11694, 115mpbid 231 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
117 0cnd 10899 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
118 mul02 11083 . . . . . . . . . 10 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
119118adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
1201, 52, 117, 117, 119caofid2 7545 . . . . . . . 8 (𝜑 → ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
121120adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
122116, 121eqtrd 2778 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}))
1231adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → 𝑆 ∈ {ℝ, ℂ})
12483, 38, 52, 1, 1, 86off 7529 . . . . . . . 8 (𝜑 → (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
125124adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
126122dmeqd 5803 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → dom (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = dom (𝑆 × {0}))
127 0cn 10898 . . . . . . . . . 10 0 ∈ ℂ
128127fconst6 6648 . . . . . . . . 9 (𝑆 × {0}):𝑆⟶ℂ
129128fdmi 6596 . . . . . . . 8 dom (𝑆 × {0}) = 𝑆
130126, 129eqtrdi 2795 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → dom (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = 𝑆)
131123, 125, 130dvconstbi 41841 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}) ↔ ∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥})))
132122, 131mpbid 231 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}))
133 oveq1 7262 . . . . . . . . . 10 ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
134 efne0 15734 . . . . . . . . . . . . . . 15 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ≠ 0)
135 eldifsn 4717 . . . . . . . . . . . . . . 15 ((exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}) ↔ ((exp‘-(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘-(𝐾 · 𝑢)) ≠ 0))
13639, 134, 135sylanbrc 582 . . . . . . . . . . . . . 14 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
13711, 136syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
138137fmpttd 6971 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0}))
139 ofdivcan4 41834 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0})) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
1401, 38, 138, 139syl3anc 1369 . . . . . . . . . . 11 (𝜑 → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
141140eqeq1d 2740 . . . . . . . . . 10 (𝜑 → (((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
142133, 141syl5ib 243 . . . . . . . . 9 (𝜑 → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
143142adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
144 vex 3426 . . . . . . . . . . . . 13 𝑥 ∈ V
145144a1i 11 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → 𝑥 ∈ V)
146 ovexd 7290 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → (1 / (exp‘(𝐾 · 𝑢))) ∈ V)
147 fconstmpt 5640 . . . . . . . . . . . . 13 (𝑆 × {𝑥}) = (𝑢𝑆𝑥)
148147a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑆 × {𝑥}) = (𝑢𝑆𝑥))
149 efneg 15735 . . . . . . . . . . . . . 14 ((𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
15010, 149syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
151150mpteq2dva 5170 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (1 / (exp‘(𝐾 · 𝑢)))))
1521, 145, 146, 148, 151offval2 7531 . . . . . . . . . . 11 (𝜑 → ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
153152adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
154 efcl 15720 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
155 efne0 15734 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ≠ 0)
156154, 155jca 511 . . . . . . . . . . . . . . . 16 ((𝐾 · 𝑢) ∈ ℂ → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
15710, 156syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑆) → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
158 ax-1ne0 10871 . . . . . . . . . . . . . . . . 17 1 ≠ 0
15918, 158pm3.2i 470 . . . . . . . . . . . . . . . 16 (1 ∈ ℂ ∧ 1 ≠ 0)
160 divdiv2 11617 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0) ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
161159, 160mp3an2 1447 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
162157, 161sylan2 592 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
16310, 154syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑆) → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
164 mulcl 10886 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ∈ ℂ) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
165163, 164sylan2 592 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
166165div1d 11673 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1) = (𝑥 · (exp‘(𝐾 · 𝑢))))
167162, 166eqtrd 2778 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
168167ancoms 458 . . . . . . . . . . . 12 (((𝜑𝑢𝑆) ∧ 𝑥 ∈ ℂ) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
169168an32s 648 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝑆) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
170169mpteq2dva 5170 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
171153, 170eqtrd 2778 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
172171eqeq2d 2749 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
173143, 172sylibd 238 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
174173reximdva 3202 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
175174adantr 480 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
176132, 175mpd 15 . . . 4 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
177176ex 412 . . 3 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1781adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑆 ∈ {ℝ, ℂ})
1794adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝐾 ∈ ℂ)
180 simprl 767 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑥 ∈ ℂ)
181 eqid 2738 . . . . . . 7 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))
182178, 179, 180, 181expgrowthi 41840 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1831823impb 1113 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
184 oveq2 7263 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
185 oveq2 7263 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 × {𝐾}) ∘f · 𝑌) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
186184, 185eqeq12d 2754 . . . . . 6 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
1871863ad2ant3 1133 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
188183, 187mpbird 256 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌))
189188rexlimdv3a 3214 . . 3 (𝜑 → (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)))
190177, 189impbid 211 . 2 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
191 oveq2 7263 . . . . . . . 8 (𝑢 = 𝑡 → (𝐾 · 𝑢) = (𝐾 · 𝑡))
192191fveq2d 6760 . . . . . . 7 (𝑢 = 𝑡 → (exp‘(𝐾 · 𝑢)) = (exp‘(𝐾 · 𝑡)))
193192oveq2d 7271 . . . . . 6 (𝑢 = 𝑡 → (𝑥 · (exp‘(𝐾 · 𝑢))) = (𝑥 · (exp‘(𝐾 · 𝑡))))
194193cbvmptv 5183 . . . . 5 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡))))
195 oveq1 7262 . . . . . 6 (𝑥 = 𝑐 → (𝑥 · (exp‘(𝐾 · 𝑡))) = (𝑐 · (exp‘(𝐾 · 𝑡))))
196195mpteq2dv 5172 . . . . 5 (𝑥 = 𝑐 → (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
197194, 196syl5eq 2791 . . . 4 (𝑥 = 𝑐 → (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
198197eqeq2d 2749 . . 3 (𝑥 = 𝑐 → (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
199198cbvrexvw 3373 . 2 (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
200190, 199bitrdi 286 1 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  {csn 4558  {cpr 4560  cmpt 5153   × cxp 5578  dom cdm 5580   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136   / cdiv 11562  expce 15699   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator