Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expgrowth Structured version   Visualization version   GIF version

Theorem expgrowth 40674
Description: Exponential growth and decay model. The derivative of a function y of variable t equals a constant k times y itself, iff y equals some constant C times the exponential of kt. This theorem and expgrowthi 40672 illustrate one of the simplest and most crucial classes of differential equations, equations that relate functions to their derivatives.

Section 6.3 of [Strang] p. 242 calls y' = ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as the Malthusian growth model or exponential law, and C, k, and t correspond to initial population size, growth rate, and time respectively (https://en.wikipedia.org/wiki/Malthusian_growth_model 40672); and in finance, the model appears in a similar role in continuous compounding with C as the initial amount of money. In exponential decay models, k is often expressed as the negative of a positive constant λ.

Here y' is given as (𝑆 D 𝑌), C as 𝑐, and ky as ((𝑆 × {𝐾}) ∘f · 𝑌). (𝑆 × {𝐾}) is the constant function that maps any real or complex input to k and f · is multiplication as a function operation.

The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf 40672 pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of [LarsonHostetlerEdwards] p. 375 (which notes " C is the initial value of y, and k is the proportionality constant. Exponential growth occurs when k > 0, and exponential decay occurs when k < 0."); its proof here closely follows the proof of y' = y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case 40672.

Statements for this and expgrowthi 40672 formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015.)

Hypotheses
Ref Expression
expgrowth.s (𝜑𝑆 ∈ {ℝ, ℂ})
expgrowth.k (𝜑𝐾 ∈ ℂ)
expgrowth.y (𝜑𝑌:𝑆⟶ℂ)
expgrowth.dy (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
Assertion
Ref Expression
expgrowth (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Distinct variable groups:   𝑡,𝑐,𝐾   𝑆,𝑐,𝑡   𝑌,𝑐
Allowed substitution hints:   𝜑(𝑡,𝑐)   𝑌(𝑡)

Proof of Theorem expgrowth
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expgrowth.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnelprrecn 10632 . . . . . . . . . . . . . . . . . 18 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℂ ∈ {ℝ, ℂ})
4 expgrowth.k . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ ℂ)
5 recnprss 24504 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
61, 5syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ⊆ ℂ)
76sseld 3968 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑢𝑆𝑢 ∈ ℂ))
8 mulcl 10623 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (𝐾 · 𝑢) ∈ ℂ)
94, 7, 8syl6an 682 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 → (𝐾 · 𝑢) ∈ ℂ))
109imp 409 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → (𝐾 · 𝑢) ∈ ℂ)
1110negcld 10986 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -(𝐾 · 𝑢) ∈ ℂ)
124negcld 10986 . . . . . . . . . . . . . . . . . 18 (𝜑 → -𝐾 ∈ ℂ)
1312adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝑆) → -𝐾 ∈ ℂ)
14 efcl 15438 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
1514adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
164adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → 𝐾 ∈ ℂ)
177imp 409 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 𝑢 ∈ ℂ)
18 ax-1cn 10597 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
1918a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑆) → 1 ∈ ℂ)
201dvmptid 24556 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆 D (𝑢𝑆𝑢)) = (𝑢𝑆 ↦ 1))
211, 17, 19, 20, 4dvmptcmul 24563 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆 ↦ (𝐾 · 1)))
224mulid1d 10660 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 · 1) = 𝐾)
2322mpteq2dv 5164 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑢𝑆 ↦ (𝐾 · 1)) = (𝑢𝑆𝐾))
2421, 23eqtrd 2858 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (𝐾 · 𝑢))) = (𝑢𝑆𝐾))
251, 10, 16, 24dvmptneg 24565 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 D (𝑢𝑆 ↦ -(𝐾 · 𝑢))) = (𝑢𝑆 ↦ -𝐾))
26 dvef 24579 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = exp
27 eff 15437 . . . . . . . . . . . . . . . . . . . . . 22 exp:ℂ⟶ℂ
28 ffn 6516 . . . . . . . . . . . . . . . . . . . . . 22 (exp:ℂ⟶ℂ → exp Fn ℂ)
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 exp Fn ℂ
30 dffn5 6726 . . . . . . . . . . . . . . . . . . . . 21 (exp Fn ℂ ↔ exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3129, 30mpbi 232 . . . . . . . . . . . . . . . . . . . 20 exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3231oveq2i 7169 . . . . . . . . . . . . . . . . . . 19 (ℂ D exp) = (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
3326, 32, 313eqtr3i 2854 . . . . . . . . . . . . . . . . . 18 (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦))
3433a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
35 fveq2 6672 . . . . . . . . . . . . . . . . 17 (𝑦 = -(𝐾 · 𝑢) → (exp‘𝑦) = (exp‘-(𝐾 · 𝑢)))
361, 3, 11, 13, 15, 15, 25, 34, 35, 35dvmptco 24571 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
3736oveq2d 7174 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌f · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
38 expgrowth.y . . . . . . . . . . . . . . . 16 (𝜑𝑌:𝑆⟶ℂ)
39 efcl 15438 . . . . . . . . . . . . . . . . . . . 20 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4011, 39syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ ℂ)
4140, 13mulcld 10663 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢𝑆) → ((exp‘-(𝐾 · 𝑢)) · -𝐾) ∈ ℂ)
4241fmpttd 6881 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ)
4336feq1d 6501 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ ↔ (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)):𝑆⟶ℂ))
4442, 43mpbird 259 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
45 mulcom 10625 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
4645adantl 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
471, 38, 44, 46caofcom 7443 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌f · (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌))
4837, 47eqtr3d 2860 . . . . . . . . . . . . . 14 (𝜑 → (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))) = ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌))
4948oveq2d 7174 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌)))
50 fconst6g 6570 . . . . . . . . . . . . . . . . . 18 (-𝐾 ∈ ℂ → (𝑆 × {-𝐾}):𝑆⟶ℂ)
5112, 50syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}):𝑆⟶ℂ)
5240fmpttd 6881 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)
531, 51, 52, 46caofcom 7443 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘f · (𝑆 × {-𝐾})))
54 eqidd 2824 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))
55 fconstmpt 5616 . . . . . . . . . . . . . . . . . 18 (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾)
5655a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑆 × {-𝐾}) = (𝑢𝑆 ↦ -𝐾))
571, 40, 13, 54, 56offval2 7428 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) ∘f · (𝑆 × {-𝐾})) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
5853, 57eqtrd 2858 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
5958oveq2d 7174 . . . . . . . . . . . . . 14 (𝜑 → (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))))
6059oveq2d 7174 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))))
61 expgrowth.dy . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D 𝑌) = 𝑆)
6236dmeqd 5776 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)))
63 eqid 2823 . . . . . . . . . . . . . . . 16 (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾))
6463, 41dmmptd 6495 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑢𝑆 ↦ ((exp‘-(𝐾 · 𝑢)) · -𝐾)) = 𝑆)
6562, 64eqtrd 2858 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑆)
661, 38, 52, 61, 65dvmulf 24542 . . . . . . . . . . . . 13 (𝜑 → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 D (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f · 𝑌)))
6749, 60, 663eqtr4rd 2869 . . . . . . . . . . . 12 (𝜑 → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
68 ofmul12 40664 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ) ∧ ((𝑆 × {-𝐾}):𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶ℂ)) → (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
691, 38, 51, 52, 68syl22anc 836 . . . . . . . . . . . . 13 (𝜑 → (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7069oveq2d 7174 . . . . . . . . . . . 12 (𝜑 → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (𝑌f · ((𝑆 × {-𝐾}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7167, 70eqtrd 2858 . . . . . . . . . . 11 (𝜑 → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
72 oveq1 7165 . . . . . . . . . . . 12 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) → ((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
7372oveq1d 7173 . . . . . . . . . . 11 ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) → (((𝑆 D 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7471, 73sylan9eq 2878 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
75 mulass 10627 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
7675adantl 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
771, 51, 38, 52, 76caofass 7445 . . . . . . . . . . . . 13 (𝜑 → (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
7877oveq2d 7174 . . . . . . . . . . . 12 (𝜑 → ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
7978eqeq2d 2834 . . . . . . . . . . 11 (𝜑 → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8079adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + ((𝑆 × {-𝐾}) ∘f · (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))))
8174, 80mpbird 259 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
82 mulcl 10623 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
8382adantl 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
84 fconst6g 6570 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → (𝑆 × {𝐾}):𝑆⟶ℂ)
854, 84syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑆 × {𝐾}):𝑆⟶ℂ)
86 inidm 4197 . . . . . . . . . . . . 13 (𝑆𝑆) = 𝑆
8783, 85, 38, 1, 1, 86off 7426 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ)
8883, 51, 38, 1, 1, 86off 7426 . . . . . . . . . . . 12 (𝜑 → ((𝑆 × {-𝐾}) ∘f · 𝑌):𝑆⟶ℂ)
89 adddir 10634 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
9089adantl 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
911, 52, 87, 88, 90caofdir 7448 . . . . . . . . . . 11 (𝜑 → ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
9291eqeq2d 2834 . . . . . . . . . 10 (𝜑 → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9392adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f + (((𝑆 × {-𝐾}) ∘f · 𝑌) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))))
9481, 93mpbird 259 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
95 ofnegsub 11638 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ ∧ ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)))
961, 87, 87, 95syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)))
97 neg1cn 11754 . . . . . . . . . . . . . . . . 17 -1 ∈ ℂ
9897fconst6 6571 . . . . . . . . . . . . . . . 16 (𝑆 × {-1}):𝑆⟶ℂ
9998a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 × {-1}):𝑆⟶ℂ)
1001, 99, 85, 38, 76caofass 7445 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) ∘f · 𝑌) = ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌)))
10197a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → -1 ∈ ℂ)
1021, 101, 4ofc12 7436 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) = (𝑆 × {(-1 · 𝐾)}))
1034mulm1d 11094 . . . . . . . . . . . . . . . . . 18 (𝜑 → (-1 · 𝐾) = -𝐾)
104103sneqd 4581 . . . . . . . . . . . . . . . . 17 (𝜑 → {(-1 · 𝐾)} = {-𝐾})
105104xpeq2d 5587 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑆 × {(-1 · 𝐾)}) = (𝑆 × {-𝐾}))
106102, 105eqtrd 2858 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) = (𝑆 × {-𝐾}))
107106oveq1d 7173 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆 × {-1}) ∘f · (𝑆 × {𝐾})) ∘f · 𝑌) = ((𝑆 × {-𝐾}) ∘f · 𝑌))
108100, 107eqtr3d 2860 . . . . . . . . . . . . 13 (𝜑 → ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌)) = ((𝑆 × {-𝐾}) ∘f · 𝑌))
109108oveq2d 7174 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-1}) ∘f · ((𝑆 × {𝐾}) ∘f · 𝑌))) = (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)))
110 ofsubid 40663 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 × {𝐾}) ∘f · 𝑌):𝑆⟶ℂ) → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)) = (𝑆 × {0}))
1111, 87, 110syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f − ((𝑆 × {𝐾}) ∘f · 𝑌)) = (𝑆 × {0}))
11296, 109, 1113eqtr3d 2866 . . . . . . . . . . 11 (𝜑 → (((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) = (𝑆 × {0}))
113112oveq1d 7173 . . . . . . . . . 10 (𝜑 → ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
114113eqeq2d 2834 . . . . . . . . 9 (𝜑 → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
115114adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((((𝑆 × {𝐾}) ∘f · 𝑌) ∘f + ((𝑆 × {-𝐾}) ∘f · 𝑌)) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
11694, 115mpbid 234 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
117 0cnd 10636 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
118 mul02 10820 . . . . . . . . . 10 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
119118adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
1201, 52, 117, 117, 119caofid2 7442 . . . . . . . 8 (𝜑 → ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
121120adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 × {0}) ∘f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {0}))
122116, 121eqtrd 2858 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}))
1231adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → 𝑆 ∈ {ℝ, ℂ})
12483, 38, 52, 1, 1, 86off 7426 . . . . . . . 8 (𝜑 → (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
125124adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))):𝑆⟶ℂ)
126122dmeqd 5776 . . . . . . . 8 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → dom (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = dom (𝑆 × {0}))
127 0cn 10635 . . . . . . . . . 10 0 ∈ ℂ
128127fconst6 6571 . . . . . . . . 9 (𝑆 × {0}):𝑆⟶ℂ
129128fdmi 6526 . . . . . . . 8 dom (𝑆 × {0}) = 𝑆
130126, 129syl6eq 2874 . . . . . . 7 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → dom (𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = 𝑆)
131123, 125, 130dvconstbi 40673 . . . . . 6 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ((𝑆 D (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))) = (𝑆 × {0}) ↔ ∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥})))
132122, 131mpbid 234 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}))
133 oveq1 7165 . . . . . . . . . 10 ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))))
134 efne0 15452 . . . . . . . . . . . . . . 15 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ≠ 0)
135 eldifsn 4721 . . . . . . . . . . . . . . 15 ((exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}) ↔ ((exp‘-(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘-(𝐾 · 𝑢)) ≠ 0))
13639, 134, 135sylanbrc 585 . . . . . . . . . . . . . 14 (-(𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
13711, 136syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) ∈ (ℂ ∖ {0}))
138137fmpttd 6881 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0}))
139 ofdivcan4 40666 . . . . . . . . . . . 12 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑌:𝑆⟶ℂ ∧ (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))):𝑆⟶(ℂ ∖ {0})) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
1401, 38, 138, 139syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = 𝑌)
141140eqeq1d 2825 . . . . . . . . . 10 (𝜑 → (((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
142133, 141syl5ib 246 . . . . . . . . 9 (𝜑 → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
143142adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))))))
144 vex 3499 . . . . . . . . . . . . 13 𝑥 ∈ V
145144a1i 11 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → 𝑥 ∈ V)
146 ovexd 7193 . . . . . . . . . . . 12 ((𝜑𝑢𝑆) → (1 / (exp‘(𝐾 · 𝑢))) ∈ V)
147 fconstmpt 5616 . . . . . . . . . . . . 13 (𝑆 × {𝑥}) = (𝑢𝑆𝑥)
148147a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑆 × {𝑥}) = (𝑢𝑆𝑥))
149 efneg 15453 . . . . . . . . . . . . . 14 ((𝐾 · 𝑢) ∈ ℂ → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
15010, 149syl 17 . . . . . . . . . . . . 13 ((𝜑𝑢𝑆) → (exp‘-(𝐾 · 𝑢)) = (1 / (exp‘(𝐾 · 𝑢))))
151150mpteq2dva 5163 . . . . . . . . . . . 12 (𝜑 → (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢))) = (𝑢𝑆 ↦ (1 / (exp‘(𝐾 · 𝑢)))))
1521, 145, 146, 148, 151offval2 7428 . . . . . . . . . . 11 (𝜑 → ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
153152adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))))
154 efcl 15438 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
155 efne0 15452 . . . . . . . . . . . . . . . . 17 ((𝐾 · 𝑢) ∈ ℂ → (exp‘(𝐾 · 𝑢)) ≠ 0)
156154, 155jca 514 . . . . . . . . . . . . . . . 16 ((𝐾 · 𝑢) ∈ ℂ → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
15710, 156syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑆) → ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0))
158 ax-1ne0 10608 . . . . . . . . . . . . . . . . 17 1 ≠ 0
15918, 158pm3.2i 473 . . . . . . . . . . . . . . . 16 (1 ∈ ℂ ∧ 1 ≠ 0)
160 divdiv2 11354 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0) ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
161159, 160mp3an2 1445 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ ((exp‘(𝐾 · 𝑢)) ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ≠ 0)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
162157, 161sylan2 594 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1))
16310, 154syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑆) → (exp‘(𝐾 · 𝑢)) ∈ ℂ)
164 mulcl 10623 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ (exp‘(𝐾 · 𝑢)) ∈ ℂ) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
165163, 164sylan2 594 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 · (exp‘(𝐾 · 𝑢))) ∈ ℂ)
166165div1d 11410 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → ((𝑥 · (exp‘(𝐾 · 𝑢))) / 1) = (𝑥 · (exp‘(𝐾 · 𝑢))))
167162, 166eqtrd 2858 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝜑𝑢𝑆)) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
168167ancoms 461 . . . . . . . . . . . 12 (((𝜑𝑢𝑆) ∧ 𝑥 ∈ ℂ) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
169168an32s 650 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝑆) → (𝑥 / (1 / (exp‘(𝐾 · 𝑢)))) = (𝑥 · (exp‘(𝐾 · 𝑢))))
170169mpteq2dva 5163 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → (𝑢𝑆 ↦ (𝑥 / (1 / (exp‘(𝐾 · 𝑢))))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
171153, 170eqtrd 2858 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
172171eqeq2d 2834 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑌 = ((𝑆 × {𝑥}) ∘f / (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
173143, 172sylibd 241 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → ((𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
174173reximdva 3276 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
175174adantr 483 . . . . 5 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → (∃𝑥 ∈ ℂ (𝑌f · (𝑢𝑆 ↦ (exp‘-(𝐾 · 𝑢)))) = (𝑆 × {𝑥}) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
176132, 175mpd 15 . . . 4 ((𝜑 ∧ (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))
177176ex 415 . . 3 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) → ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1781adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑆 ∈ {ℝ, ℂ})
1794adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝐾 ∈ ℂ)
180 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → 𝑥 ∈ ℂ)
181 eqid 2823 . . . . . . 7 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))
182178, 179, 180, 181expgrowthi 40672 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
1831823impb 1111 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
184 oveq2 7166 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
185 oveq2 7166 . . . . . . 7 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 × {𝐾}) ∘f · 𝑌) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
186184, 185eqeq12d 2839 . . . . . 6 (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
1871863ad2ant3 1131 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ (𝑆 D (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) = ((𝑆 × {𝐾}) ∘f · (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))))))
188183, 187mpbird 259 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌))
189188rexlimdv3a 3288 . . 3 (𝜑 → (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)))
190177, 189impbid 214 . 2 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢))))))
191 oveq2 7166 . . . . . . . 8 (𝑢 = 𝑡 → (𝐾 · 𝑢) = (𝐾 · 𝑡))
192191fveq2d 6676 . . . . . . 7 (𝑢 = 𝑡 → (exp‘(𝐾 · 𝑢)) = (exp‘(𝐾 · 𝑡)))
193192oveq2d 7174 . . . . . 6 (𝑢 = 𝑡 → (𝑥 · (exp‘(𝐾 · 𝑢))) = (𝑥 · (exp‘(𝐾 · 𝑡))))
194193cbvmptv 5171 . . . . 5 (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡))))
195 oveq1 7165 . . . . . 6 (𝑥 = 𝑐 → (𝑥 · (exp‘(𝐾 · 𝑡))) = (𝑐 · (exp‘(𝐾 · 𝑡))))
196195mpteq2dv 5164 . . . . 5 (𝑥 = 𝑐 → (𝑡𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑡)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
197194, 196syl5eq 2870 . . . 4 (𝑥 = 𝑐 → (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
198197eqeq2d 2834 . . 3 (𝑥 = 𝑐 → (𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
199198cbvrexvw 3452 . 2 (∃𝑥 ∈ ℂ 𝑌 = (𝑢𝑆 ↦ (𝑥 · (exp‘(𝐾 · 𝑢)))) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))
200190, 199syl6bb 289 1 (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wrex 3141  Vcvv 3496  cdif 3935  wss 3938  {csn 4569  {cpr 4571  cmpt 5148   × cxp 5555  dom cdm 5557   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872  -cneg 10873   / cdiv 11299  expce 15417   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator