MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ser1const Structured version   Visualization version   GIF version

Theorem ser1const 14096
Description: Value of the partial series sum of a constant function. (Contributed by NM, 8-Aug-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Assertion
Ref Expression
ser1const ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))

Proof of Theorem ser1const
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . . 5 (𝑗 = 1 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘1))
2 oveq1 7438 . . . . 5 (𝑗 = 1 → (𝑗 · 𝐴) = (1 · 𝐴))
31, 2eqeq12d 2751 . . . 4 (𝑗 = 1 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴)))
43imbi2d 340 . . 3 (𝑗 = 1 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴))))
5 fveq2 6907 . . . . 5 (𝑗 = 𝑘 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘𝑘))
6 oveq1 7438 . . . . 5 (𝑗 = 𝑘 → (𝑗 · 𝐴) = (𝑘 · 𝐴))
75, 6eqeq12d 2751 . . . 4 (𝑗 = 𝑘 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴)))
87imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴))))
9 fveq2 6907 . . . . 5 (𝑗 = (𝑘 + 1) → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)))
10 oveq1 7438 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 · 𝐴) = ((𝑘 + 1) · 𝐴))
119, 10eqeq12d 2751 . . . 4 (𝑗 = (𝑘 + 1) → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴)))
1211imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
13 fveq2 6907 . . . . 5 (𝑗 = 𝑁 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘𝑁))
14 oveq1 7438 . . . . 5 (𝑗 = 𝑁 → (𝑗 · 𝐴) = (𝑁 · 𝐴))
1513, 14eqeq12d 2751 . . . 4 (𝑗 = 𝑁 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴)))
1615imbi2d 340 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))))
17 1z 12645 . . . 4 1 ∈ ℤ
18 1nn 12275 . . . . . 6 1 ∈ ℕ
19 fvconst2g 7222 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴)
2018, 19mpan2 691 . . . . 5 (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴)
21 mullid 11258 . . . . 5 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2220, 21eqtr4d 2778 . . . 4 (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = (1 · 𝐴))
2317, 22seq1i 14053 . . 3 (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴))
24 oveq1 7438 . . . . . 6 ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴) = ((𝑘 · 𝐴) + 𝐴))
25 seqp1 14054 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘1) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
26 nnuz 12919 . . . . . . . . . 10 ℕ = (ℤ‘1)
2725, 26eleq2s 2857 . . . . . . . . 9 (𝑘 ∈ ℕ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
2827adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
29 peano2nn 12276 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
30 fvconst2g 7222 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
3129, 30sylan2 593 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
3231oveq2d 7447 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴))
3328, 32eqtrd 2775 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴))
34 nncn 12272 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
35 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
36 ax-1cn 11211 . . . . . . . . . 10 1 ∈ ℂ
37 adddir 11250 . . . . . . . . . 10 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
3836, 37mp3an2 1448 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
3934, 35, 38syl2anr 597 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
4021adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (1 · 𝐴) = 𝐴)
4140oveq2d 7447 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 · 𝐴) + (1 · 𝐴)) = ((𝑘 · 𝐴) + 𝐴))
4239, 41eqtrd 2775 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + 𝐴))
4333, 42eqeq12d 2751 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴) ↔ ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴) = ((𝑘 · 𝐴) + 𝐴)))
4424, 43imbitrrid 246 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴)))
4544expcom 413 . . . 4 (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
4645a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴)) → (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
474, 8, 12, 16, 23, 46nnind 12282 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴)))
4847impcom 407 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {csn 4631   × cxp 5687  cfv 6563  (class class class)co 7431  cc 11151  1c1 11154   + caddc 11156   · cmul 11158  cn 12264  cuz 12876  seqcseq 14039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040
This theorem is referenced by:  fsumconst  15823  vitalilem4  25660  ovoliunnfl  37649  voliunnfl  37651
  Copyright terms: Public domain W3C validator