MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ser1const Structured version   Visualization version   GIF version

Theorem ser1const 13235
Description: Value of the partial series sum of a constant function. (Contributed by NM, 8-Aug-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Assertion
Ref Expression
ser1const ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))

Proof of Theorem ser1const
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6493 . . . . 5 (𝑗 = 1 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘1))
2 oveq1 6977 . . . . 5 (𝑗 = 1 → (𝑗 · 𝐴) = (1 · 𝐴))
31, 2eqeq12d 2787 . . . 4 (𝑗 = 1 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴)))
43imbi2d 333 . . 3 (𝑗 = 1 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴))))
5 fveq2 6493 . . . . 5 (𝑗 = 𝑘 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘𝑘))
6 oveq1 6977 . . . . 5 (𝑗 = 𝑘 → (𝑗 · 𝐴) = (𝑘 · 𝐴))
75, 6eqeq12d 2787 . . . 4 (𝑗 = 𝑘 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴)))
87imbi2d 333 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴))))
9 fveq2 6493 . . . . 5 (𝑗 = (𝑘 + 1) → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)))
10 oveq1 6977 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 · 𝐴) = ((𝑘 + 1) · 𝐴))
119, 10eqeq12d 2787 . . . 4 (𝑗 = (𝑘 + 1) → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴)))
1211imbi2d 333 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
13 fveq2 6493 . . . . 5 (𝑗 = 𝑁 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘𝑁))
14 oveq1 6977 . . . . 5 (𝑗 = 𝑁 → (𝑗 · 𝐴) = (𝑁 · 𝐴))
1513, 14eqeq12d 2787 . . . 4 (𝑗 = 𝑁 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴)))
1615imbi2d 333 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))))
17 1z 11819 . . . 4 1 ∈ ℤ
18 1nn 11446 . . . . . 6 1 ∈ ℕ
19 fvconst2g 6785 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴)
2018, 19mpan2 678 . . . . 5 (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴)
21 mulid2 10432 . . . . 5 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2220, 21eqtr4d 2811 . . . 4 (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = (1 · 𝐴))
2317, 22seq1i 13192 . . 3 (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴))
24 oveq1 6977 . . . . . 6 ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴) = ((𝑘 · 𝐴) + 𝐴))
25 seqp1 13193 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘1) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
26 nnuz 12089 . . . . . . . . . 10 ℕ = (ℤ‘1)
2725, 26eleq2s 2878 . . . . . . . . 9 (𝑘 ∈ ℕ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
2827adantl 474 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
29 peano2nn 11447 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
30 fvconst2g 6785 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
3129, 30sylan2 583 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
3231oveq2d 6986 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴))
3328, 32eqtrd 2808 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴))
34 nncn 11442 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
35 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
36 ax-1cn 10387 . . . . . . . . . 10 1 ∈ ℂ
37 adddir 10424 . . . . . . . . . 10 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
3836, 37mp3an2 1428 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
3934, 35, 38syl2anr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
4021adantr 473 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (1 · 𝐴) = 𝐴)
4140oveq2d 6986 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 · 𝐴) + (1 · 𝐴)) = ((𝑘 · 𝐴) + 𝐴))
4239, 41eqtrd 2808 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + 𝐴))
4333, 42eqeq12d 2787 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴) ↔ ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴) = ((𝑘 · 𝐴) + 𝐴)))
4424, 43syl5ibr 238 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴)))
4544expcom 406 . . . 4 (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
4645a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴)) → (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
474, 8, 12, 16, 23, 46nnind 11453 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴)))
4847impcom 399 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  {csn 4435   × cxp 5399  cfv 6182  (class class class)co 6970  cc 10327  1c1 10330   + caddc 10332   · cmul 10334  cn 11433  cuz 12052  seqcseq 13178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-nn 11434  df-n0 11702  df-z 11788  df-uz 12053  df-seq 13179
This theorem is referenced by:  fsumconst  14999  vitalilem4  23909  ovoliunnfl  34375  voliunnfl  34377
  Copyright terms: Public domain W3C validator