MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ser1const Structured version   Visualization version   GIF version

Theorem ser1const 14081
Description: Value of the partial series sum of a constant function. (Contributed by NM, 8-Aug-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Assertion
Ref Expression
ser1const ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))

Proof of Theorem ser1const
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . . 5 (𝑗 = 1 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘1))
2 oveq1 7417 . . . . 5 (𝑗 = 1 → (𝑗 · 𝐴) = (1 · 𝐴))
31, 2eqeq12d 2752 . . . 4 (𝑗 = 1 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴)))
43imbi2d 340 . . 3 (𝑗 = 1 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴))))
5 fveq2 6881 . . . . 5 (𝑗 = 𝑘 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘𝑘))
6 oveq1 7417 . . . . 5 (𝑗 = 𝑘 → (𝑗 · 𝐴) = (𝑘 · 𝐴))
75, 6eqeq12d 2752 . . . 4 (𝑗 = 𝑘 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴)))
87imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴))))
9 fveq2 6881 . . . . 5 (𝑗 = (𝑘 + 1) → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)))
10 oveq1 7417 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 · 𝐴) = ((𝑘 + 1) · 𝐴))
119, 10eqeq12d 2752 . . . 4 (𝑗 = (𝑘 + 1) → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴)))
1211imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
13 fveq2 6881 . . . . 5 (𝑗 = 𝑁 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘𝑁))
14 oveq1 7417 . . . . 5 (𝑗 = 𝑁 → (𝑗 · 𝐴) = (𝑁 · 𝐴))
1513, 14eqeq12d 2752 . . . 4 (𝑗 = 𝑁 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴)))
1615imbi2d 340 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))))
17 1z 12627 . . . 4 1 ∈ ℤ
18 1nn 12256 . . . . . 6 1 ∈ ℕ
19 fvconst2g 7199 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴)
2018, 19mpan2 691 . . . . 5 (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴)
21 mullid 11239 . . . . 5 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2220, 21eqtr4d 2774 . . . 4 (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = (1 · 𝐴))
2317, 22seq1i 14038 . . 3 (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴))
24 oveq1 7417 . . . . . 6 ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴) = ((𝑘 · 𝐴) + 𝐴))
25 seqp1 14039 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘1) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
26 nnuz 12900 . . . . . . . . . 10 ℕ = (ℤ‘1)
2725, 26eleq2s 2853 . . . . . . . . 9 (𝑘 ∈ ℕ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
2827adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
29 peano2nn 12257 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
30 fvconst2g 7199 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
3129, 30sylan2 593 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
3231oveq2d 7426 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴))
3328, 32eqtrd 2771 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴))
34 nncn 12253 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
35 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
36 ax-1cn 11192 . . . . . . . . . 10 1 ∈ ℂ
37 adddir 11231 . . . . . . . . . 10 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
3836, 37mp3an2 1451 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
3934, 35, 38syl2anr 597 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
4021adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (1 · 𝐴) = 𝐴)
4140oveq2d 7426 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 · 𝐴) + (1 · 𝐴)) = ((𝑘 · 𝐴) + 𝐴))
4239, 41eqtrd 2771 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + 𝐴))
4333, 42eqeq12d 2752 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴) ↔ ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴) = ((𝑘 · 𝐴) + 𝐴)))
4424, 43imbitrrid 246 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴)))
4544expcom 413 . . . 4 (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
4645a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴)) → (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
474, 8, 12, 16, 23, 46nnind 12263 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴)))
4847impcom 407 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4606   × cxp 5657  cfv 6536  (class class class)co 7410  cc 11132  1c1 11135   + caddc 11137   · cmul 11139  cn 12245  cuz 12857  seqcseq 14024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025
This theorem is referenced by:  fsumconst  15811  vitalilem4  25569  ovoliunnfl  37691  voliunnfl  37693
  Copyright terms: Public domain W3C validator