MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ser1const Structured version   Visualization version   GIF version

Theorem ser1const 13422
Description: Value of the partial series sum of a constant function. (Contributed by NM, 8-Aug-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Assertion
Ref Expression
ser1const ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))

Proof of Theorem ser1const
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6652 . . . . 5 (𝑗 = 1 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘1))
2 oveq1 7147 . . . . 5 (𝑗 = 1 → (𝑗 · 𝐴) = (1 · 𝐴))
31, 2eqeq12d 2838 . . . 4 (𝑗 = 1 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴)))
43imbi2d 344 . . 3 (𝑗 = 1 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴))))
5 fveq2 6652 . . . . 5 (𝑗 = 𝑘 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘𝑘))
6 oveq1 7147 . . . . 5 (𝑗 = 𝑘 → (𝑗 · 𝐴) = (𝑘 · 𝐴))
75, 6eqeq12d 2838 . . . 4 (𝑗 = 𝑘 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴)))
87imbi2d 344 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴))))
9 fveq2 6652 . . . . 5 (𝑗 = (𝑘 + 1) → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)))
10 oveq1 7147 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 · 𝐴) = ((𝑘 + 1) · 𝐴))
119, 10eqeq12d 2838 . . . 4 (𝑗 = (𝑘 + 1) → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴)))
1211imbi2d 344 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
13 fveq2 6652 . . . . 5 (𝑗 = 𝑁 → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (seq1( + , (ℕ × {𝐴}))‘𝑁))
14 oveq1 7147 . . . . 5 (𝑗 = 𝑁 → (𝑗 · 𝐴) = (𝑁 · 𝐴))
1513, 14eqeq12d 2838 . . . 4 (𝑗 = 𝑁 → ((seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴) ↔ (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴)))
1615imbi2d 344 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑗) = (𝑗 · 𝐴)) ↔ (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))))
17 1z 12000 . . . 4 1 ∈ ℤ
18 1nn 11636 . . . . . 6 1 ∈ ℕ
19 fvconst2g 6946 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ) → ((ℕ × {𝐴})‘1) = 𝐴)
2018, 19mpan2 690 . . . . 5 (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = 𝐴)
21 mulid2 10629 . . . . 5 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2220, 21eqtr4d 2860 . . . 4 (𝐴 ∈ ℂ → ((ℕ × {𝐴})‘1) = (1 · 𝐴))
2317, 22seq1i 13378 . . 3 (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘1) = (1 · 𝐴))
24 oveq1 7147 . . . . . 6 ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴) = ((𝑘 · 𝐴) + 𝐴))
25 seqp1 13379 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘1) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
26 nnuz 12269 . . . . . . . . . 10 ℕ = (ℤ‘1)
2725, 26eleq2s 2932 . . . . . . . . 9 (𝑘 ∈ ℕ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
2827adantl 485 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))))
29 peano2nn 11637 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
30 fvconst2g 6946 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
3129, 30sylan2 595 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑘 + 1)) = 𝐴)
3231oveq2d 7156 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) + ((ℕ × {𝐴})‘(𝑘 + 1))) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴))
3328, 32eqtrd 2857 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴))
34 nncn 11633 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
35 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
36 ax-1cn 10584 . . . . . . . . . 10 1 ∈ ℂ
37 adddir 10621 . . . . . . . . . 10 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
3836, 37mp3an2 1446 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
3934, 35, 38syl2anr 599 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
4021adantr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (1 · 𝐴) = 𝐴)
4140oveq2d 7156 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 · 𝐴) + (1 · 𝐴)) = ((𝑘 · 𝐴) + 𝐴))
4239, 41eqtrd 2857 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + 𝐴))
4333, 42eqeq12d 2838 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴) ↔ ((seq1( + , (ℕ × {𝐴}))‘𝑘) + 𝐴) = ((𝑘 · 𝐴) + 𝐴)))
4424, 43syl5ibr 249 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ) → ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴)))
4544expcom 417 . . . 4 (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → ((seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴) → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
4645a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑘) = (𝑘 · 𝐴)) → (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘(𝑘 + 1)) = ((𝑘 + 1) · 𝐴))))
474, 8, 12, 16, 23, 46nnind 11643 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴)))
4847impcom 411 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  {csn 4539   × cxp 5530  cfv 6334  (class class class)co 7140  cc 10524  1c1 10527   + caddc 10529   · cmul 10531  cn 11625  cuz 12231  seqcseq 13364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365
This theorem is referenced by:  fsumconst  15136  vitalilem4  24213  ovoliunnfl  35057  voliunnfl  35059
  Copyright terms: Public domain W3C validator