MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayrn Structured version   Visualization version   GIF version

Theorem bdayrn 27744
Description: The birthday function's range is On. (Contributed by Scott Fenton, 14-Jun-2011.)
Assertion
Ref Expression
bdayrn ran bday = On

Proof of Theorem bdayrn
StepHypRef Expression
1 bdayfo 27646 . 2 bday : No onto→On
2 forn 6798 . 2 ( bday : No onto→On → ran bday = On)
31, 2ax-mp 5 1 ran bday = On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ran crn 5660  Oncon0 6357  ontowfo 6534   No csur 27608   bday cbday 27610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-suc 6363  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-1o 8485  df-no 27611  df-bday 27613
This theorem is referenced by:  nocvxminlem  27746  nocvxmin  27747  etasslt2  27783  scutbdaybnd2lim  27786  bday0s  27797  lrrecfr  27907  onsiso  28226  bdayon  28230  zs12bday  28400
  Copyright terms: Public domain W3C validator