Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nocvxmin Structured version   Visualization version   GIF version

Theorem nocvxmin 33969
Description: Given a nonempty convex class of surreals, there is a unique birthday-minimal element of that class. Lemma 0 of [Alling] p. 185. (Contributed by Scott Fenton, 30-Jun-2011.)
Assertion
Ref Expression
nocvxmin ((𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∃!𝑤𝐴 ( bday 𝑤) = ( bday 𝐴))
Distinct variable group:   𝑤,𝐴,𝑥,𝑦,𝑧

Proof of Theorem nocvxmin
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 imassrn 5979 . . . . . 6 ( bday 𝐴) ⊆ ran bday
2 bdayrn 33966 . . . . . 6 ran bday = On
31, 2sseqtri 3962 . . . . 5 ( bday 𝐴) ⊆ On
4 bdaydm 33965 . . . . . . . . . . 11 dom bday = No
54sseq2i 3955 . . . . . . . . . 10 (𝐴 ⊆ dom bday 𝐴 No )
6 bdayfun 33963 . . . . . . . . . . 11 Fun bday
7 funfvima2 7104 . . . . . . . . . . 11 ((Fun bday 𝐴 ⊆ dom bday ) → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
86, 7mpan 687 . . . . . . . . . 10 (𝐴 ⊆ dom bday → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
95, 8sylbir 234 . . . . . . . . 9 (𝐴 No → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
10 elex2 2820 . . . . . . . . 9 (( bday 𝑥) ∈ ( bday 𝐴) → ∃𝑤 𝑤 ∈ ( bday 𝐴))
119, 10syl6 35 . . . . . . . 8 (𝐴 No → (𝑥𝐴 → ∃𝑤 𝑤 ∈ ( bday 𝐴)))
1211exlimdv 1940 . . . . . . 7 (𝐴 No → (∃𝑥 𝑥𝐴 → ∃𝑤 𝑤 ∈ ( bday 𝐴)))
13 n0 4286 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
14 n0 4286 . . . . . . 7 (( bday 𝐴) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ ( bday 𝐴))
1512, 13, 143imtr4g 296 . . . . . 6 (𝐴 No → (𝐴 ≠ ∅ → ( bday 𝐴) ≠ ∅))
1615impcom 408 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐴 No ) → ( bday 𝐴) ≠ ∅)
17 onint 7634 . . . . 5 ((( bday 𝐴) ⊆ On ∧ ( bday 𝐴) ≠ ∅) → ( bday 𝐴) ∈ ( bday 𝐴))
183, 16, 17sylancr 587 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 No ) → ( bday 𝐴) ∈ ( bday 𝐴))
19 bdayfn 33964 . . . . . 6 bday Fn No
20 fvelimab 6838 . . . . . 6 (( bday Fn No 𝐴 No ) → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴)))
2119, 20mpan 687 . . . . 5 (𝐴 No → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴)))
2221adantl 482 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 No ) → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴)))
2318, 22mpbid 231 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 No ) → ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴))
24233adant3 1131 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴))
25 ssel 3919 . . . . . . . . 9 (𝐴 No → (𝑤𝐴𝑤 No ))
26 ssel 3919 . . . . . . . . 9 (𝐴 No → (𝑡𝐴𝑡 No ))
2725, 26anim12d 609 . . . . . . . 8 (𝐴 No → ((𝑤𝐴𝑡𝐴) → (𝑤 No 𝑡 No )))
2827imp 407 . . . . . . 7 ((𝐴 No ∧ (𝑤𝐴𝑡𝐴)) → (𝑤 No 𝑡 No ))
2928ad2ant2r 744 . . . . . 6 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)))) → (𝑤 No 𝑡 No ))
30 nocvxminlem 33968 . . . . . . 7 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴))) → ¬ 𝑤 <s 𝑡))
3130imp 407 . . . . . 6 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)))) → ¬ 𝑤 <s 𝑡)
32 ancom 461 . . . . . . . . 9 ((𝑤𝐴𝑡𝐴) ↔ (𝑡𝐴𝑤𝐴))
33 ancom 461 . . . . . . . . 9 ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) ↔ (( bday 𝑡) = ( bday 𝐴) ∧ ( bday 𝑤) = ( bday 𝐴)))
3432, 33anbi12i 627 . . . . . . . 8 (((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴))) ↔ ((𝑡𝐴𝑤𝐴) ∧ (( bday 𝑡) = ( bday 𝐴) ∧ ( bday 𝑤) = ( bday 𝐴))))
35 nocvxminlem 33968 . . . . . . . 8 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑡𝐴𝑤𝐴) ∧ (( bday 𝑡) = ( bday 𝐴) ∧ ( bday 𝑤) = ( bday 𝐴))) → ¬ 𝑡 <s 𝑤))
3634, 35syl5bi 241 . . . . . . 7 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴))) → ¬ 𝑡 <s 𝑤))
3736imp 407 . . . . . 6 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)))) → ¬ 𝑡 <s 𝑤)
38 slttrieq2 33949 . . . . . . 7 ((𝑤 No 𝑡 No ) → (𝑤 = 𝑡 ↔ (¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤)))
3938biimpar 478 . . . . . 6 (((𝑤 No 𝑡 No ) ∧ (¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤)) → 𝑤 = 𝑡)
4029, 31, 37, 39syl12anc 834 . . . . 5 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)))) → 𝑤 = 𝑡)
4140exp32 421 . . . 4 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ((𝑤𝐴𝑡𝐴) → ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) → 𝑤 = 𝑡)))
4241ralrimivv 3116 . . 3 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∀𝑤𝐴𝑡𝐴 ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) → 𝑤 = 𝑡))
43423adant1 1129 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∀𝑤𝐴𝑡𝐴 ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) → 𝑤 = 𝑡))
44 fveqeq2 6780 . . 3 (𝑤 = 𝑡 → (( bday 𝑤) = ( bday 𝐴) ↔ ( bday 𝑡) = ( bday 𝐴)))
4544reu4 3670 . 2 (∃!𝑤𝐴 ( bday 𝑤) = ( bday 𝐴) ↔ (∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴) ∧ ∀𝑤𝐴𝑡𝐴 ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) → 𝑤 = 𝑡)))
4624, 43, 45sylanbrc 583 1 ((𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∃!𝑤𝐴 ( bday 𝑤) = ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wex 1786  wcel 2110  wne 2945  wral 3066  wrex 3067  ∃!wreu 3068  wss 3892  c0 4262   cint 4885   class class class wbr 5079  dom cdm 5590  ran crn 5591  cima 5593  Oncon0 6265  Fun wfun 6426   Fn wfn 6427  cfv 6432   No csur 33839   <s cslt 33840   bday cbday 33841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6268  df-on 6269  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-1o 8288  df-2o 8289  df-no 33842  df-slt 33843  df-bday 33844
This theorem is referenced by:  conway  33989
  Copyright terms: Public domain W3C validator