Step | Hyp | Ref
| Expression |
1 | | imassrn 5980 |
. . . . . 6
⊢ ( bday “ 𝐴) ⊆ ran bday
|
2 | | bdayrn 33970 |
. . . . . 6
⊢ ran bday = On |
3 | 1, 2 | sseqtri 3957 |
. . . . 5
⊢ ( bday “ 𝐴) ⊆ On |
4 | | bdaydm 33969 |
. . . . . . . . . . 11
⊢ dom bday = No
|
5 | 4 | sseq2i 3950 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ dom bday ↔ 𝐴 ⊆ No
) |
6 | | bdayfun 33967 |
. . . . . . . . . . 11
⊢ Fun bday |
7 | | funfvima2 7107 |
. . . . . . . . . . 11
⊢ ((Fun
bday ∧ 𝐴 ⊆ dom bday
) → (𝑥 ∈
𝐴 → ( bday ‘𝑥) ∈ ( bday
“ 𝐴))) |
8 | 6, 7 | mpan 687 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ dom bday → (𝑥 ∈ 𝐴 → ( bday
‘𝑥) ∈
( bday “ 𝐴))) |
9 | 5, 8 | sylbir 234 |
. . . . . . . . 9
⊢ (𝐴 ⊆
No → (𝑥 ∈
𝐴 → ( bday ‘𝑥) ∈ ( bday
“ 𝐴))) |
10 | | elex2 2818 |
. . . . . . . . 9
⊢ (( bday ‘𝑥) ∈ ( bday
“ 𝐴) →
∃𝑤 𝑤 ∈ ( bday
“ 𝐴)) |
11 | 9, 10 | syl6 35 |
. . . . . . . 8
⊢ (𝐴 ⊆
No → (𝑥 ∈
𝐴 → ∃𝑤 𝑤 ∈ ( bday
“ 𝐴))) |
12 | 11 | exlimdv 1936 |
. . . . . . 7
⊢ (𝐴 ⊆
No → (∃𝑥
𝑥 ∈ 𝐴 → ∃𝑤 𝑤 ∈ ( bday
“ 𝐴))) |
13 | | n0 4280 |
. . . . . . 7
⊢ (𝐴 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐴) |
14 | | n0 4280 |
. . . . . . 7
⊢ (( bday “ 𝐴) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ ( bday
“ 𝐴)) |
15 | 12, 13, 14 | 3imtr4g 296 |
. . . . . 6
⊢ (𝐴 ⊆
No → (𝐴 ≠
∅ → ( bday “ 𝐴) ≠ ∅)) |
16 | 15 | impcom 408 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆
No ) → ( bday “ 𝐴) ≠ ∅) |
17 | | onint 7640 |
. . . . 5
⊢ ((( bday “ 𝐴) ⊆ On ∧ (
bday “ 𝐴)
≠ ∅) → ∩ ( bday
“ 𝐴) ∈
( bday “ 𝐴)) |
18 | 3, 16, 17 | sylancr 587 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆
No ) → ∩ ( bday
“ 𝐴) ∈
( bday “ 𝐴)) |
19 | | bdayfn 33968 |
. . . . . 6
⊢ bday Fn No
|
20 | | fvelimab 6841 |
. . . . . 6
⊢ (( bday Fn No ∧ 𝐴 ⊆
No ) → (∩ ( bday
“ 𝐴) ∈
( bday “ 𝐴) ↔ ∃𝑤 ∈ 𝐴 ( bday
‘𝑤) = ∩ ( bday “ 𝐴))) |
21 | 19, 20 | mpan 687 |
. . . . 5
⊢ (𝐴 ⊆
No → (∩ ( bday
“ 𝐴) ∈
( bday “ 𝐴) ↔ ∃𝑤 ∈ 𝐴 ( bday
‘𝑤) = ∩ ( bday “ 𝐴))) |
22 | 21 | adantl 482 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆
No ) → (∩ ( bday
“ 𝐴) ∈
( bday “ 𝐴) ↔ ∃𝑤 ∈ 𝐴 ( bday
‘𝑤) = ∩ ( bday “ 𝐴))) |
23 | 18, 22 | mpbid 231 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆
No ) → ∃𝑤
∈ 𝐴 ( bday ‘𝑤) = ∩ ( bday “ 𝐴)) |
24 | 23 | 3adant3 1131 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ∃𝑤 ∈ 𝐴 ( bday
‘𝑤) = ∩ ( bday “ 𝐴)) |
25 | | ssel 3914 |
. . . . . . . . 9
⊢ (𝐴 ⊆
No → (𝑤 ∈
𝐴 → 𝑤 ∈ No
)) |
26 | | ssel 3914 |
. . . . . . . . 9
⊢ (𝐴 ⊆
No → (𝑡 ∈
𝐴 → 𝑡 ∈ No
)) |
27 | 25, 26 | anim12d 609 |
. . . . . . . 8
⊢ (𝐴 ⊆
No → ((𝑤
∈ 𝐴 ∧ 𝑡 ∈ 𝐴) → (𝑤 ∈ No
∧ 𝑡 ∈ No ))) |
28 | 27 | imp 407 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ (𝑤 ∈
𝐴 ∧ 𝑡 ∈ 𝐴)) → (𝑤 ∈ No
∧ 𝑡 ∈ No )) |
29 | 28 | ad2ant2r 744 |
. . . . . 6
⊢ (((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) ∧ ((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)))) → (𝑤 ∈ No
∧ 𝑡 ∈ No )) |
30 | | nocvxminlem 33972 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → (((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴))) → ¬ 𝑤 <s 𝑡)) |
31 | 30 | imp 407 |
. . . . . 6
⊢ (((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) ∧ ((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)))) → ¬ 𝑤 <s 𝑡) |
32 | | ancom 461 |
. . . . . . . . 9
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ↔ (𝑡 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) |
33 | | ancom 461 |
. . . . . . . . 9
⊢ ((( bday ‘𝑤) = ∩ ( bday “ 𝐴) ∧ ( bday
‘𝑡) = ∩ ( bday “ 𝐴)) ↔ (( bday ‘𝑡) = ∩ ( bday “ 𝐴) ∧ ( bday
‘𝑤) = ∩ ( bday “ 𝐴))) |
34 | 32, 33 | anbi12i 627 |
. . . . . . . 8
⊢ (((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴))) ↔ ((𝑡 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (( bday
‘𝑡) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑤) =
∩ ( bday “ 𝐴)))) |
35 | | nocvxminlem 33972 |
. . . . . . . 8
⊢ ((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → (((𝑡 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (( bday
‘𝑡) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑤) =
∩ ( bday “ 𝐴))) → ¬ 𝑡 <s 𝑤)) |
36 | 34, 35 | syl5bi 241 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → (((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴))) → ¬ 𝑡 <s 𝑤)) |
37 | 36 | imp 407 |
. . . . . 6
⊢ (((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) ∧ ((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)))) → ¬ 𝑡 <s 𝑤) |
38 | | slttrieq2 33953 |
. . . . . . 7
⊢ ((𝑤 ∈
No ∧ 𝑡 ∈
No ) → (𝑤 = 𝑡 ↔ (¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤))) |
39 | 38 | biimpar 478 |
. . . . . 6
⊢ (((𝑤 ∈
No ∧ 𝑡 ∈
No ) ∧ (¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤)) → 𝑤 = 𝑡) |
40 | 29, 31, 37, 39 | syl12anc 834 |
. . . . 5
⊢ (((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) ∧ ((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)))) → 𝑤 = 𝑡) |
41 | 40 | exp32 421 |
. . . 4
⊢ ((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) → ((( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)) → 𝑤 = 𝑡))) |
42 | 41 | ralrimivv 3122 |
. . 3
⊢ ((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ∀𝑤 ∈ 𝐴 ∀𝑡 ∈ 𝐴 ((( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)) → 𝑤 = 𝑡)) |
43 | 42 | 3adant1 1129 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ∀𝑤 ∈ 𝐴 ∀𝑡 ∈ 𝐴 ((( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)) → 𝑤 = 𝑡)) |
44 | | fveqeq2 6783 |
. . 3
⊢ (𝑤 = 𝑡 → (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ↔ (
bday ‘𝑡) =
∩ ( bday “ 𝐴))) |
45 | 44 | reu4 3666 |
. 2
⊢
(∃!𝑤 ∈
𝐴 (
bday ‘𝑤) =
∩ ( bday “ 𝐴) ↔ (∃𝑤 ∈ 𝐴 ( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ ∀𝑤 ∈ 𝐴 ∀𝑡 ∈ 𝐴 ((( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)) → 𝑤 = 𝑡))) |
46 | 24, 43, 45 | sylanbrc 583 |
1
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ∃!𝑤 ∈ 𝐴 ( bday
‘𝑤) = ∩ ( bday “ 𝐴)) |