MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nocvxmin Structured version   Visualization version   GIF version

Theorem nocvxmin 27697
Description: Given a nonempty convex class of surreals, there is a unique birthday-minimal element of that class. Lemma 0 of [Alling] p. 185. (Contributed by Scott Fenton, 30-Jun-2011.)
Assertion
Ref Expression
nocvxmin ((𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∃!𝑤𝐴 ( bday 𝑤) = ( bday 𝐴))
Distinct variable group:   𝑤,𝐴,𝑥,𝑦,𝑧

Proof of Theorem nocvxmin
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 imassrn 6045 . . . . . 6 ( bday 𝐴) ⊆ ran bday
2 bdayrn 27694 . . . . . 6 ran bday = On
31, 2sseqtri 3998 . . . . 5 ( bday 𝐴) ⊆ On
4 bdaydm 27693 . . . . . . . . . . 11 dom bday = No
54sseq2i 3979 . . . . . . . . . 10 (𝐴 ⊆ dom bday 𝐴 No )
6 bdayfun 27691 . . . . . . . . . . 11 Fun bday
7 funfvima2 7208 . . . . . . . . . . 11 ((Fun bday 𝐴 ⊆ dom bday ) → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
86, 7mpan 690 . . . . . . . . . 10 (𝐴 ⊆ dom bday → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
95, 8sylbir 235 . . . . . . . . 9 (𝐴 No → (𝑥𝐴 → ( bday 𝑥) ∈ ( bday 𝐴)))
10 elex2 2806 . . . . . . . . 9 (( bday 𝑥) ∈ ( bday 𝐴) → ∃𝑤 𝑤 ∈ ( bday 𝐴))
119, 10syl6 35 . . . . . . . 8 (𝐴 No → (𝑥𝐴 → ∃𝑤 𝑤 ∈ ( bday 𝐴)))
1211exlimdv 1933 . . . . . . 7 (𝐴 No → (∃𝑥 𝑥𝐴 → ∃𝑤 𝑤 ∈ ( bday 𝐴)))
13 n0 4319 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
14 n0 4319 . . . . . . 7 (( bday 𝐴) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ ( bday 𝐴))
1512, 13, 143imtr4g 296 . . . . . 6 (𝐴 No → (𝐴 ≠ ∅ → ( bday 𝐴) ≠ ∅))
1615impcom 407 . . . . 5 ((𝐴 ≠ ∅ ∧ 𝐴 No ) → ( bday 𝐴) ≠ ∅)
17 onint 7769 . . . . 5 ((( bday 𝐴) ⊆ On ∧ ( bday 𝐴) ≠ ∅) → ( bday 𝐴) ∈ ( bday 𝐴))
183, 16, 17sylancr 587 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 No ) → ( bday 𝐴) ∈ ( bday 𝐴))
19 bdayfn 27692 . . . . . 6 bday Fn No
20 fvelimab 6936 . . . . . 6 (( bday Fn No 𝐴 No ) → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴)))
2119, 20mpan 690 . . . . 5 (𝐴 No → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴)))
2221adantl 481 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 No ) → ( ( bday 𝐴) ∈ ( bday 𝐴) ↔ ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴)))
2318, 22mpbid 232 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 No ) → ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴))
24233adant3 1132 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴))
25 ssel 3943 . . . . . . . . 9 (𝐴 No → (𝑤𝐴𝑤 No ))
26 ssel 3943 . . . . . . . . 9 (𝐴 No → (𝑡𝐴𝑡 No ))
2725, 26anim12d 609 . . . . . . . 8 (𝐴 No → ((𝑤𝐴𝑡𝐴) → (𝑤 No 𝑡 No )))
2827imp 406 . . . . . . 7 ((𝐴 No ∧ (𝑤𝐴𝑡𝐴)) → (𝑤 No 𝑡 No ))
2928ad2ant2r 747 . . . . . 6 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)))) → (𝑤 No 𝑡 No ))
30 nocvxminlem 27696 . . . . . . 7 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴))) → ¬ 𝑤 <s 𝑡))
3130imp 406 . . . . . 6 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)))) → ¬ 𝑤 <s 𝑡)
32 ancom 460 . . . . . . . . 9 ((𝑤𝐴𝑡𝐴) ↔ (𝑡𝐴𝑤𝐴))
33 ancom 460 . . . . . . . . 9 ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) ↔ (( bday 𝑡) = ( bday 𝐴) ∧ ( bday 𝑤) = ( bday 𝐴)))
3432, 33anbi12i 628 . . . . . . . 8 (((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴))) ↔ ((𝑡𝐴𝑤𝐴) ∧ (( bday 𝑡) = ( bday 𝐴) ∧ ( bday 𝑤) = ( bday 𝐴))))
35 nocvxminlem 27696 . . . . . . . 8 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑡𝐴𝑤𝐴) ∧ (( bday 𝑡) = ( bday 𝐴) ∧ ( bday 𝑤) = ( bday 𝐴))) → ¬ 𝑡 <s 𝑤))
3634, 35biimtrid 242 . . . . . . 7 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴))) → ¬ 𝑡 <s 𝑤))
3736imp 406 . . . . . 6 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)))) → ¬ 𝑡 <s 𝑤)
38 slttrieq2 27669 . . . . . . 7 ((𝑤 No 𝑡 No ) → (𝑤 = 𝑡 ↔ (¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤)))
3938biimpar 477 . . . . . 6 (((𝑤 No 𝑡 No ) ∧ (¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤)) → 𝑤 = 𝑡)
4029, 31, 37, 39syl12anc 836 . . . . 5 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑤𝐴𝑡𝐴) ∧ (( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)))) → 𝑤 = 𝑡)
4140exp32 420 . . . 4 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ((𝑤𝐴𝑡𝐴) → ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) → 𝑤 = 𝑡)))
4241ralrimivv 3179 . . 3 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∀𝑤𝐴𝑡𝐴 ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) → 𝑤 = 𝑡))
43423adant1 1130 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∀𝑤𝐴𝑡𝐴 ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) → 𝑤 = 𝑡))
44 fveqeq2 6870 . . 3 (𝑤 = 𝑡 → (( bday 𝑤) = ( bday 𝐴) ↔ ( bday 𝑡) = ( bday 𝐴)))
4544reu4 3705 . 2 (∃!𝑤𝐴 ( bday 𝑤) = ( bday 𝐴) ↔ (∃𝑤𝐴 ( bday 𝑤) = ( bday 𝐴) ∧ ∀𝑤𝐴𝑡𝐴 ((( bday 𝑤) = ( bday 𝐴) ∧ ( bday 𝑡) = ( bday 𝐴)) → 𝑤 = 𝑡)))
4624, 43, 45sylanbrc 583 1 ((𝐴 ≠ ∅ ∧ 𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ∃!𝑤𝐴 ( bday 𝑤) = ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  ∃!wreu 3354  wss 3917  c0 4299   cint 4913   class class class wbr 5110  dom cdm 5641  ran crn 5642  cima 5644  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  cfv 6514   No csur 27558   <s cslt 27559   bday cbday 27560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563
This theorem is referenced by:  conway  27718
  Copyright terms: Public domain W3C validator