| Step | Hyp | Ref
| Expression |
| 1 | | nobdaymin 27687 |
. . . 4
⊢ ((𝐴 ⊆
No ∧ 𝐴 ≠
∅) → ∃𝑤
∈ 𝐴 ( bday ‘𝑤) = ∩ ( bday “ 𝐴)) |
| 2 | 1 | ancoms 458 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆
No ) → ∃𝑤
∈ 𝐴 ( bday ‘𝑤) = ∩ ( bday “ 𝐴)) |
| 3 | 2 | 3adant3 1132 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ∃𝑤 ∈ 𝐴 ( bday
‘𝑤) = ∩ ( bday “ 𝐴)) |
| 4 | | ssel 3929 |
. . . . . . . . 9
⊢ (𝐴 ⊆
No → (𝑤 ∈
𝐴 → 𝑤 ∈ No
)) |
| 5 | | ssel 3929 |
. . . . . . . . 9
⊢ (𝐴 ⊆
No → (𝑡 ∈
𝐴 → 𝑡 ∈ No
)) |
| 6 | 4, 5 | anim12d 609 |
. . . . . . . 8
⊢ (𝐴 ⊆
No → ((𝑤
∈ 𝐴 ∧ 𝑡 ∈ 𝐴) → (𝑤 ∈ No
∧ 𝑡 ∈ No ))) |
| 7 | 6 | imp 406 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ (𝑤 ∈
𝐴 ∧ 𝑡 ∈ 𝐴)) → (𝑤 ∈ No
∧ 𝑡 ∈ No )) |
| 8 | 7 | ad2ant2r 747 |
. . . . . 6
⊢ (((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) ∧ ((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)))) → (𝑤 ∈ No
∧ 𝑡 ∈ No )) |
| 9 | | nocvxminlem 27688 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → (((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴))) → ¬ 𝑤 <s 𝑡)) |
| 10 | 9 | imp 406 |
. . . . . 6
⊢ (((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) ∧ ((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)))) → ¬ 𝑤 <s 𝑡) |
| 11 | | an2anr 636 |
. . . . . . . 8
⊢ (((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴))) ↔ ((𝑡 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (( bday
‘𝑡) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑤) =
∩ ( bday “ 𝐴)))) |
| 12 | | nocvxminlem 27688 |
. . . . . . . 8
⊢ ((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → (((𝑡 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ (( bday
‘𝑡) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑤) =
∩ ( bday “ 𝐴))) → ¬ 𝑡 <s 𝑤)) |
| 13 | 11, 12 | biimtrid 242 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → (((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴))) → ¬ 𝑡 <s 𝑤)) |
| 14 | 13 | imp 406 |
. . . . . 6
⊢ (((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) ∧ ((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)))) → ¬ 𝑡 <s 𝑤) |
| 15 | | slttrieq2 27660 |
. . . . . . 7
⊢ ((𝑤 ∈
No ∧ 𝑡 ∈
No ) → (𝑤 = 𝑡 ↔ (¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤))) |
| 16 | 15 | biimpar 477 |
. . . . . 6
⊢ (((𝑤 ∈
No ∧ 𝑡 ∈
No ) ∧ (¬ 𝑤 <s 𝑡 ∧ ¬ 𝑡 <s 𝑤)) → 𝑤 = 𝑡) |
| 17 | 8, 10, 14, 16 | syl12anc 836 |
. . . . 5
⊢ (((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) ∧ ((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) ∧ (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)))) → 𝑤 = 𝑡) |
| 18 | 17 | exp32 420 |
. . . 4
⊢ ((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ((𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴) → ((( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)) → 𝑤 = 𝑡))) |
| 19 | 18 | ralrimivv 3170 |
. . 3
⊢ ((𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ∀𝑤 ∈ 𝐴 ∀𝑡 ∈ 𝐴 ((( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)) → 𝑤 = 𝑡)) |
| 20 | 19 | 3adant1 1130 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ∀𝑤 ∈ 𝐴 ∀𝑡 ∈ 𝐴 ((( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)) → 𝑤 = 𝑡)) |
| 21 | | fveqeq2 6831 |
. . 3
⊢ (𝑤 = 𝑡 → (( bday
‘𝑤) = ∩ ( bday “ 𝐴) ↔ (
bday ‘𝑡) =
∩ ( bday “ 𝐴))) |
| 22 | 21 | reu4 3691 |
. 2
⊢
(∃!𝑤 ∈
𝐴 (
bday ‘𝑤) =
∩ ( bday “ 𝐴) ↔ (∃𝑤 ∈ 𝐴 ( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ ∀𝑤 ∈ 𝐴 ∀𝑡 ∈ 𝐴 ((( bday
‘𝑤) = ∩ ( bday “ 𝐴) ∧ (
bday ‘𝑡) =
∩ ( bday “ 𝐴)) → 𝑤 = 𝑡))) |
| 23 | 3, 20, 22 | sylanbrc 583 |
1
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆
No ∧ ∀𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ No
((𝑥 <s 𝑧 ∧ 𝑧 <s 𝑦) → 𝑧 ∈ 𝐴)) → ∃!𝑤 ∈ 𝐴 ( bday
‘𝑤) = ∩ ( bday “ 𝐴)) |