MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdaydm Structured version   Visualization version   GIF version

Theorem bdaydm 27662
Description: The birthday function's domain is No . (Contributed by Scott Fenton, 14-Jun-2011.)
Assertion
Ref Expression
bdaydm dom bday = No

Proof of Theorem bdaydm
StepHypRef Expression
1 bdayfo 27565 . . 3 bday : No onto→On
2 fof 6754 . . 3 ( bday : No onto→On → bday : No ⟶On)
31, 2ax-mp 5 . 2 bday : No ⟶On
43fdmi 6681 1 dom bday = No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  dom cdm 5631  Oncon0 6320  wf 6495  ontowfo 6497   No csur 27527   bday cbday 27529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-suc 6326  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-1o 8411  df-no 27530  df-bday 27532
This theorem is referenced by:  nocvxminlem  27665  nocvxmin  27666  bday0s  27716  leftval  27747  rightval  27748  madebdayim  27775  lrold  27784  addsbdaylem  27899  negsbdaylem  27938  onscutlt  28141  onsiso  28145  bdayon  28149  bdayn0sf1o  28235
  Copyright terms: Public domain W3C validator