Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bdaydm | Structured version Visualization version GIF version |
Description: The birthday function's domain is No . (Contributed by Scott Fenton, 14-Jun-2011.) |
Ref | Expression |
---|---|
bdaydm | ⊢ dom bday = No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 33880 | . . 3 ⊢ bday : No –onto→On | |
2 | fof 6688 | . . 3 ⊢ ( bday : No –onto→On → bday : No ⟶On) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ bday : No ⟶On |
4 | 3 | fdmi 6612 | 1 ⊢ dom bday = No |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 dom cdm 5589 Oncon0 6266 ⟶wf 6429 –onto→wfo 6431 No csur 33843 bday cbday 33845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-1o 8297 df-no 33846 df-bday 33848 |
This theorem is referenced by: nocvxminlem 33972 nocvxmin 33973 bday0s 34022 leftval 34047 rightval 34048 madebdayim 34070 lrold 34077 |
Copyright terms: Public domain | W3C validator |