MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdaydm Structured version   Visualization version   GIF version

Theorem bdaydm 27754
Description: The birthday function's domain is No . (Contributed by Scott Fenton, 14-Jun-2011.)
Assertion
Ref Expression
bdaydm dom bday = No

Proof of Theorem bdaydm
StepHypRef Expression
1 bdayfo 27657 . . 3 bday : No onto→On
2 fof 6799 . . 3 ( bday : No onto→On → bday : No ⟶On)
31, 2ax-mp 5 . 2 bday : No ⟶On
43fdmi 6726 1 dom bday = No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  dom cdm 5665  Oncon0 6363  wf 6536  ontowfo 6538   No csur 27619   bday cbday 27621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-suc 6369  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-1o 8487  df-no 27622  df-bday 27624
This theorem is referenced by:  nocvxminlem  27757  nocvxmin  27758  bday0s  27808  leftval  27837  rightval  27838  madebdayim  27861  lrold  27870  addsbdaylem  27984  negsbdaylem  28023
  Copyright terms: Public domain W3C validator