| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdaydm | Structured version Visualization version GIF version | ||
| Description: The birthday function's domain is No . (Contributed by Scott Fenton, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| bdaydm | ⊢ dom bday = No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27657 | . . 3 ⊢ bday : No –onto→On | |
| 2 | fof 6799 | . . 3 ⊢ ( bday : No –onto→On → bday : No ⟶On) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ bday : No ⟶On |
| 4 | 3 | fdmi 6726 | 1 ⊢ dom bday = No |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 dom cdm 5665 Oncon0 6363 ⟶wf 6536 –onto→wfo 6538 No csur 27619 bday cbday 27621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-suc 6369 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-1o 8487 df-no 27622 df-bday 27624 |
| This theorem is referenced by: nocvxminlem 27757 nocvxmin 27758 bday0s 27808 leftval 27837 rightval 27838 madebdayim 27861 lrold 27870 addsbdaylem 27984 negsbdaylem 28023 |
| Copyright terms: Public domain | W3C validator |