| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdaydm | Structured version Visualization version GIF version | ||
| Description: The birthday function's domain is No . (Contributed by Scott Fenton, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| bdaydm | ⊢ dom bday = No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27587 | . . 3 ⊢ bday : No –onto→On | |
| 2 | fof 6736 | . . 3 ⊢ ( bday : No –onto→On → bday : No ⟶On) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ bday : No ⟶On |
| 4 | 3 | fdmi 6663 | 1 ⊢ dom bday = No |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 dom cdm 5619 Oncon0 6307 ⟶wf 6478 –onto→wfo 6480 No csur 27549 bday cbday 27551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-suc 6313 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-1o 8388 df-no 27552 df-bday 27554 |
| This theorem is referenced by: nobdaymin 27687 nocvxminlem 27688 bday0s 27742 leftval 27773 rightval 27774 madebdayim 27802 lrold 27811 addsbdaylem 27928 negsbdaylem 27967 onscutlt 28170 onsiso 28174 bdayon 28178 bdayn0sf1o 28264 |
| Copyright terms: Public domain | W3C validator |