![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bdaydm | Structured version Visualization version GIF version |
Description: The birthday function's domain is No . (Contributed by Scott Fenton, 14-Jun-2011.) |
Ref | Expression |
---|---|
bdaydm | ⊢ dom bday = No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 27745 | . . 3 ⊢ bday : No –onto→On | |
2 | fof 6825 | . . 3 ⊢ ( bday : No –onto→On → bday : No ⟶On) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ bday : No ⟶On |
4 | 3 | fdmi 6752 | 1 ⊢ dom bday = No |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 dom cdm 5690 Oncon0 6389 ⟶wf 6562 –onto→wfo 6564 No csur 27707 bday cbday 27709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-suc 6395 df-fun 6568 df-fn 6569 df-f 6570 df-fo 6572 df-1o 8511 df-no 27710 df-bday 27712 |
This theorem is referenced by: nocvxminlem 27845 nocvxmin 27846 bday0s 27896 leftval 27925 rightval 27926 madebdayim 27949 lrold 27958 addsbdaylem 28072 negsbdaylem 28111 |
Copyright terms: Public domain | W3C validator |