MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdaydm Structured version   Visualization version   GIF version

Theorem bdaydm 27839
Description: The birthday function's domain is No . (Contributed by Scott Fenton, 14-Jun-2011.)
Assertion
Ref Expression
bdaydm dom bday = No

Proof of Theorem bdaydm
StepHypRef Expression
1 bdayfo 27742 . . 3 bday : No onto→On
2 fof 6836 . . 3 ( bday : No onto→On → bday : No ⟶On)
31, 2ax-mp 5 . 2 bday : No ⟶On
43fdmi 6760 1 dom bday = No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  dom cdm 5700  Oncon0 6397  wf 6571  ontowfo 6573   No csur 27704   bday cbday 27706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-suc 6403  df-fun 6577  df-fn 6578  df-f 6579  df-fo 6581  df-1o 8524  df-no 27707  df-bday 27709
This theorem is referenced by:  nocvxminlem  27842  nocvxmin  27843  bday0s  27893  leftval  27922  rightval  27923  madebdayim  27946  lrold  27955  addsbdaylem  28069  negsbdaylem  28108
  Copyright terms: Public domain W3C validator