![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpgt0 | Structured version Visualization version GIF version |
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
Ref | Expression |
---|---|
rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 13033 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5147 ℝcr 11151 0cc0 11152 < clt 11292 ℝ+crp 13031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-rp 13032 |
This theorem is referenced by: rpge0 13045 rpgecl 13060 0nrp 13067 rpgt0d 13077 addlelt 13146 0mod 13938 sgnrrp 15126 01sqrexlem2 15278 01sqrexlem4 15280 01sqrexlem6 15282 resqrex 15285 rpsqrtcl 15299 climconst 15575 rlimconst 15576 divrcnv 15884 rprisefaccl 16055 blcntrps 24437 blcntr 24438 stdbdmet 24544 stdbdmopn 24546 prdsxmslem2 24557 metustid 24582 nmoix 24765 metdseq0 24889 lebnumii 25011 itgulm 26465 pilem2 26510 cos02pilt1 26582 tanregt0 26595 logdmnrp 26697 cxple2 26753 asinneg 26943 asin1 26951 reasinsin 26953 atanbndlem 26982 atanbnd 26983 atan1 26985 rlimcnp 27022 chtrpcl 27232 ppiltx 27234 bposlem8 27349 pntlem3 27667 padicabvcxp 27690 0cnop 32007 0cnfn 32008 rpdp2cl 32848 xdivpnfrp 32899 pnfinf 33172 hgt750lem2 34645 taupilem1 37303 itg2gt0cn 37661 areacirclem1 37694 areacirclem4 37697 prdstotbnd 37780 prdsbnd2 37781 aks4d1p1p6 42054 irrapxlem3 42811 neglt 45234 xralrple2 45303 constlimc 45579 0cnv 45697 ioodvbdlimc1lem1 45886 fourierdlem103 46164 fourierdlem104 46165 etransclem18 46207 etransclem46 46235 hoidmvlelem3 46552 |
Copyright terms: Public domain | W3C validator |