| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 12960 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 0cc0 11075 < clt 11215 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-rp 12959 |
| This theorem is referenced by: rpge0 12972 neglt 12978 rpgecl 12988 0nrp 12995 rpgt0d 13005 addlelt 13074 0mod 13871 sgnrrp 15064 01sqrexlem2 15216 01sqrexlem4 15218 01sqrexlem6 15220 resqrex 15223 rpsqrtcl 15237 climconst 15516 rlimconst 15517 divrcnv 15825 rprisefaccl 15996 blcntrps 24307 blcntr 24308 stdbdmet 24411 stdbdmopn 24413 prdsxmslem2 24424 metustid 24449 nmoix 24624 metdseq0 24750 lebnumii 24872 itgulm 26324 pilem2 26369 cos02pilt1 26442 tanregt0 26455 logdmnrp 26557 cxple2 26613 asinneg 26803 asin1 26811 reasinsin 26813 atanbndlem 26842 atanbnd 26843 atan1 26845 rlimcnp 26882 chtrpcl 27092 ppiltx 27094 bposlem8 27209 pntlem3 27527 padicabvcxp 27550 0cnop 31915 0cnfn 31916 rpdp2cl 32809 xdivpnfrp 32860 pnfinf 33144 hgt750lem2 34650 taupilem1 37316 itg2gt0cn 37676 areacirclem1 37709 areacirclem4 37712 prdstotbnd 37795 prdsbnd2 37796 aks4d1p1p6 42068 irrapxlem3 42819 xralrple2 45357 constlimc 45629 0cnv 45747 ioodvbdlimc1lem1 45936 fourierdlem103 46214 fourierdlem104 46215 etransclem18 46257 etransclem46 46285 hoidmvlelem3 46602 |
| Copyright terms: Public domain | W3C validator |