![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpgt0 | Structured version Visualization version GIF version |
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
Ref | Expression |
---|---|
rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 12076 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | 1 | simprbi 491 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 class class class wbr 4843 ℝcr 10223 0cc0 10224 < clt 10363 ℝ+crp 12074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-rp 12075 |
This theorem is referenced by: rpge0 12089 rpgecl 12104 0nrp 12110 rpgt0d 12120 addlelt 12189 0mod 12956 sgnrrp 14172 sqrlem2 14325 sqrlem4 14327 sqrlem6 14329 resqrex 14332 rpsqrtcl 14346 climconst 14615 rlimconst 14616 divrcnv 14922 rprisefaccl 15090 blcntrps 22545 blcntr 22546 stdbdmet 22649 stdbdmopn 22651 prdsxmslem2 22662 metustid 22687 nmoix 22861 metdseq0 22985 lebnumii 23093 itgulm 24503 pilem2 24547 tanregt0 24627 logdmnrp 24728 cxple2 24784 asinneg 24965 asin1 24973 reasinsin 24975 atanbndlem 25004 atanbnd 25005 atan1 25007 rlimcnp 25044 chtrpcl 25253 ppiltx 25255 bposlem8 25368 pntlem3 25650 padicabvcxp 25673 0cnop 29363 0cnfn 29364 rpdp2cl 30106 xdivpnfrp 30157 pnfinf 30253 hgt750lem2 31250 taupilem1 33666 itg2gt0cn 33953 areacirclem1 33988 areacirclem4 33991 prdstotbnd 34080 prdsbnd2 34081 irrapxlem3 38174 neglt 40242 xralrple2 40314 constlimc 40600 0cnv 40718 ioodvbdlimc1lem1 40890 fourierdlem103 41169 fourierdlem104 41170 etransclem18 41212 etransclem46 41240 hoidmvlelem3 41557 |
Copyright terms: Public domain | W3C validator |