Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpgt0 | Structured version Visualization version GIF version |
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
Ref | Expression |
---|---|
rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 12760 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2101 class class class wbr 5077 ℝcr 10898 0cc0 10899 < clt 11037 ℝ+crp 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-br 5078 df-rp 12759 |
This theorem is referenced by: rpge0 12771 rpgecl 12786 0nrp 12793 rpgt0d 12803 addlelt 12872 0mod 13650 sgnrrp 14830 sqrlem2 14983 sqrlem4 14985 sqrlem6 14987 resqrex 14990 rpsqrtcl 15004 climconst 15280 rlimconst 15281 divrcnv 15592 rprisefaccl 15761 blcntrps 23593 blcntr 23594 stdbdmet 23700 stdbdmopn 23702 prdsxmslem2 23713 metustid 23738 nmoix 23921 metdseq0 24045 lebnumii 24157 itgulm 25595 pilem2 25639 cos02pilt1 25710 tanregt0 25723 logdmnrp 25824 cxple2 25880 asinneg 26064 asin1 26072 reasinsin 26074 atanbndlem 26103 atanbnd 26104 atan1 26106 rlimcnp 26143 chtrpcl 26352 ppiltx 26354 bposlem8 26467 pntlem3 26785 padicabvcxp 26808 0cnop 30369 0cnfn 30370 rpdp2cl 31184 xdivpnfrp 31235 pnfinf 31465 hgt750lem2 32660 taupilem1 35520 itg2gt0cn 35860 areacirclem1 35893 areacirclem4 35896 prdstotbnd 35980 prdsbnd2 35981 aks4d1p1p6 40107 irrapxlem3 40669 neglt 42857 xralrple2 42927 constlimc 43200 0cnv 43318 ioodvbdlimc1lem1 43507 fourierdlem103 43785 fourierdlem104 43786 etransclem18 43828 etransclem46 43856 hoidmvlelem3 44171 |
Copyright terms: Public domain | W3C validator |