| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 12884 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 class class class wbr 5089 ℝcr 10997 0cc0 10998 < clt 11138 ℝ+crp 12882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-rp 12883 |
| This theorem is referenced by: rpge0 12896 neglt 12902 rpgecl 12912 0nrp 12919 rpgt0d 12929 addlelt 12998 0mod 13798 sgnrrp 14990 01sqrexlem2 15142 01sqrexlem4 15144 01sqrexlem6 15146 resqrex 15149 rpsqrtcl 15163 climconst 15442 rlimconst 15443 divrcnv 15751 rprisefaccl 15922 blcntrps 24320 blcntr 24321 stdbdmet 24424 stdbdmopn 24426 prdsxmslem2 24437 metustid 24462 nmoix 24637 metdseq0 24763 lebnumii 24885 itgulm 26337 pilem2 26382 cos02pilt1 26455 tanregt0 26468 logdmnrp 26570 cxple2 26626 asinneg 26816 asin1 26824 reasinsin 26826 atanbndlem 26855 atanbnd 26856 atan1 26858 rlimcnp 26895 chtrpcl 27105 ppiltx 27107 bposlem8 27222 pntlem3 27540 padicabvcxp 27563 0cnop 31949 0cnfn 31950 rpdp2cl 32852 xdivpnfrp 32903 pnfinf 33142 hgt750lem2 34655 taupilem1 37334 itg2gt0cn 37694 areacirclem1 37727 areacirclem4 37730 prdstotbnd 37813 prdsbnd2 37814 aks4d1p1p6 42085 irrapxlem3 42836 xralrple2 45372 constlimc 45643 0cnv 45759 ioodvbdlimc1lem1 45948 fourierdlem103 46226 fourierdlem104 46227 etransclem18 46269 etransclem46 46297 hoidmvlelem3 46614 |
| Copyright terms: Public domain | W3C validator |