| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 13010 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5119 ℝcr 11128 0cc0 11129 < clt 11269 ℝ+crp 13008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-rp 13009 |
| This theorem is referenced by: rpge0 13022 rpgecl 13037 0nrp 13044 rpgt0d 13054 addlelt 13123 0mod 13919 sgnrrp 15110 01sqrexlem2 15262 01sqrexlem4 15264 01sqrexlem6 15266 resqrex 15269 rpsqrtcl 15283 climconst 15559 rlimconst 15560 divrcnv 15868 rprisefaccl 16039 blcntrps 24351 blcntr 24352 stdbdmet 24455 stdbdmopn 24457 prdsxmslem2 24468 metustid 24493 nmoix 24668 metdseq0 24794 lebnumii 24916 itgulm 26369 pilem2 26414 cos02pilt1 26487 tanregt0 26500 logdmnrp 26602 cxple2 26658 asinneg 26848 asin1 26856 reasinsin 26858 atanbndlem 26887 atanbnd 26888 atan1 26890 rlimcnp 26927 chtrpcl 27137 ppiltx 27139 bposlem8 27254 pntlem3 27572 padicabvcxp 27595 0cnop 31960 0cnfn 31961 rpdp2cl 32856 xdivpnfrp 32907 pnfinf 33181 hgt750lem2 34684 taupilem1 37339 itg2gt0cn 37699 areacirclem1 37732 areacirclem4 37735 prdstotbnd 37818 prdsbnd2 37819 aks4d1p1p6 42086 irrapxlem3 42847 neglt 45313 xralrple2 45381 constlimc 45653 0cnv 45771 ioodvbdlimc1lem1 45960 fourierdlem103 46238 fourierdlem104 46239 etransclem18 46281 etransclem46 46309 hoidmvlelem3 46626 |
| Copyright terms: Public domain | W3C validator |