![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpgt0 | Structured version Visualization version GIF version |
Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
Ref | Expression |
---|---|
rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 13059 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 0cc0 11184 < clt 11324 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-rp 13058 |
This theorem is referenced by: rpge0 13070 rpgecl 13085 0nrp 13092 rpgt0d 13102 addlelt 13171 0mod 13953 sgnrrp 15140 01sqrexlem2 15292 01sqrexlem4 15294 01sqrexlem6 15296 resqrex 15299 rpsqrtcl 15313 climconst 15589 rlimconst 15590 divrcnv 15900 rprisefaccl 16071 blcntrps 24443 blcntr 24444 stdbdmet 24550 stdbdmopn 24552 prdsxmslem2 24563 metustid 24588 nmoix 24771 metdseq0 24895 lebnumii 25017 itgulm 26469 pilem2 26514 cos02pilt1 26586 tanregt0 26599 logdmnrp 26701 cxple2 26757 asinneg 26947 asin1 26955 reasinsin 26957 atanbndlem 26986 atanbnd 26987 atan1 26989 rlimcnp 27026 chtrpcl 27236 ppiltx 27238 bposlem8 27353 pntlem3 27671 padicabvcxp 27694 0cnop 32011 0cnfn 32012 rpdp2cl 32846 xdivpnfrp 32897 pnfinf 33163 hgt750lem2 34629 taupilem1 37287 itg2gt0cn 37635 areacirclem1 37668 areacirclem4 37671 prdstotbnd 37754 prdsbnd2 37755 aks4d1p1p6 42030 irrapxlem3 42780 neglt 45199 xralrple2 45269 constlimc 45545 0cnv 45663 ioodvbdlimc1lem1 45852 fourierdlem103 46130 fourierdlem104 46131 etransclem18 46173 etransclem46 46201 hoidmvlelem3 46518 |
Copyright terms: Public domain | W3C validator |