| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 12953 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 0cc0 11068 < clt 11208 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-rp 12952 |
| This theorem is referenced by: rpge0 12965 neglt 12971 rpgecl 12981 0nrp 12988 rpgt0d 12998 addlelt 13067 0mod 13864 sgnrrp 15057 01sqrexlem2 15209 01sqrexlem4 15211 01sqrexlem6 15213 resqrex 15216 rpsqrtcl 15230 climconst 15509 rlimconst 15510 divrcnv 15818 rprisefaccl 15989 blcntrps 24300 blcntr 24301 stdbdmet 24404 stdbdmopn 24406 prdsxmslem2 24417 metustid 24442 nmoix 24617 metdseq0 24743 lebnumii 24865 itgulm 26317 pilem2 26362 cos02pilt1 26435 tanregt0 26448 logdmnrp 26550 cxple2 26606 asinneg 26796 asin1 26804 reasinsin 26806 atanbndlem 26835 atanbnd 26836 atan1 26838 rlimcnp 26875 chtrpcl 27085 ppiltx 27087 bposlem8 27202 pntlem3 27520 padicabvcxp 27543 0cnop 31908 0cnfn 31909 rpdp2cl 32802 xdivpnfrp 32853 pnfinf 33137 hgt750lem2 34643 taupilem1 37309 itg2gt0cn 37669 areacirclem1 37702 areacirclem4 37705 prdstotbnd 37788 prdsbnd2 37789 aks4d1p1p6 42061 irrapxlem3 42812 xralrple2 45350 constlimc 45622 0cnv 45740 ioodvbdlimc1lem1 45929 fourierdlem103 46207 fourierdlem104 46208 etransclem18 46250 etransclem46 46278 hoidmvlelem3 46595 |
| Copyright terms: Public domain | W3C validator |