| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 12913 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 0cc0 11028 < clt 11168 ℝ+crp 12911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-rp 12912 |
| This theorem is referenced by: rpge0 12925 neglt 12931 rpgecl 12941 0nrp 12948 rpgt0d 12958 addlelt 13027 0mod 13824 sgnrrp 15016 01sqrexlem2 15168 01sqrexlem4 15170 01sqrexlem6 15172 resqrex 15175 rpsqrtcl 15189 climconst 15468 rlimconst 15469 divrcnv 15777 rprisefaccl 15948 blcntrps 24316 blcntr 24317 stdbdmet 24420 stdbdmopn 24422 prdsxmslem2 24433 metustid 24458 nmoix 24633 metdseq0 24759 lebnumii 24881 itgulm 26333 pilem2 26378 cos02pilt1 26451 tanregt0 26464 logdmnrp 26566 cxple2 26622 asinneg 26812 asin1 26820 reasinsin 26822 atanbndlem 26851 atanbnd 26852 atan1 26854 rlimcnp 26891 chtrpcl 27101 ppiltx 27103 bposlem8 27218 pntlem3 27536 padicabvcxp 27559 0cnop 31941 0cnfn 31942 rpdp2cl 32835 xdivpnfrp 32886 pnfinf 33135 hgt750lem2 34619 taupilem1 37294 itg2gt0cn 37654 areacirclem1 37687 areacirclem4 37690 prdstotbnd 37773 prdsbnd2 37774 aks4d1p1p6 42046 irrapxlem3 42797 xralrple2 45334 constlimc 45606 0cnv 45724 ioodvbdlimc1lem1 45913 fourierdlem103 46191 fourierdlem104 46192 etransclem18 46234 etransclem46 46262 hoidmvlelem3 46579 |
| Copyright terms: Public domain | W3C validator |