| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpgt0 | Structured version Visualization version GIF version | ||
| Description: A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| Ref | Expression |
|---|---|
| rpgt0 | ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 12902 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5095 ℝcr 11015 0cc0 11016 < clt 11156 ℝ+crp 12900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-rp 12901 |
| This theorem is referenced by: rpge0 12914 neglt 12920 rpgecl 12930 0nrp 12937 rpgt0d 12947 addlelt 13016 0mod 13816 sgnrrp 15008 01sqrexlem2 15160 01sqrexlem4 15162 01sqrexlem6 15164 resqrex 15167 rpsqrtcl 15181 climconst 15460 rlimconst 15461 divrcnv 15769 rprisefaccl 15940 blcntrps 24337 blcntr 24338 stdbdmet 24441 stdbdmopn 24443 prdsxmslem2 24454 metustid 24479 nmoix 24654 metdseq0 24780 lebnumii 24902 itgulm 26354 pilem2 26399 cos02pilt1 26472 tanregt0 26485 logdmnrp 26587 cxple2 26643 asinneg 26833 asin1 26841 reasinsin 26843 atanbndlem 26872 atanbnd 26873 atan1 26875 rlimcnp 26912 chtrpcl 27122 ppiltx 27124 bposlem8 27239 pntlem3 27557 padicabvcxp 27580 0cnop 31970 0cnfn 31971 rpdp2cl 32873 xdivpnfrp 32924 pnfinf 33163 hgt750lem2 34676 taupilem1 37376 itg2gt0cn 37725 areacirclem1 37758 areacirclem4 37761 prdstotbnd 37844 prdsbnd2 37845 aks4d1p1p6 42176 irrapxlem3 42931 xralrple2 45467 constlimc 45738 0cnv 45854 ioodvbdlimc1lem1 46043 fourierdlem103 46321 fourierdlem104 46322 etransclem18 46364 etransclem46 46392 hoidmvlelem3 46709 |
| Copyright terms: Public domain | W3C validator |